Subscribe to RSS
DOI: 10.1055/s-0031-1289877
A Highly Diastereoselective Access to Silicon-Containing Oxazines via the TMSOTf-Promoted Reactions of N-Benzoyl-N,O-acetals with Allyl Silanes
Publication History
Publication Date:
11 November 2011 (online)
Abstract
A TMSOTf-promoted cycloaddition of N-benzoyl-N,O-acetals with allyl silanes to synthesize silicon-containing oxazines with high diastereoselectivities has been developed. The obtained products might be useful as building blocks in organic synthesis.
Key words
N-benzoyl-N,O-acetals - oxazine - cycloaddition - diastereoselectivity
- Supporting Information for this article is available online:
- Supporting Information
- For reviews concerning C-C bond formation using imines as material, see:
-
1a
Yamamoto Y.Asao N. Chem. Rev. 1993, 93: 2207 -
1b
Enders D.Reinhold U. Tetrahedron: Asymmetry 1997, 8: 1895 -
1c
Bloch R. Chem. Rev. 1998, 98: 1407 -
1d
Kobayashi S.Ishitani H. Chem. Rev. 1999, 99: 1069 -
1e
Liu M.Sibi MP. Tetrahedron 2002, 58: 7991 -
1f
Friestad GF.Mathies AK. Tetrahedron 2007, 63: 2541 -
1g
Nugent TC.El-Shazly M. Adv. Synth. Catal. 2010, 352: 753 - For reference on Povarov reaction, see:
-
2a
Povarov L. Russ Chem. Rev. 1967, 36: 656 -
2b
Bello D.Ramon R.Lavilla R. Curr. Org. Chem. 2010, 14: 332 -
2c
Glushkov VA.Tolstikov AG. Russ. Chem. Rev. 2008, 77: 137 -
2d
Wang S.Zhao YL.Zhang W.Liu Q. J. Org. Chem. 2007, 72: 4985 -
2e
Akiyama T.Morita H.Fuchibe K.
J. Am. Chem. Soc. 2006, 128: 13070 -
2f
Twin H.Batey RA. Org. Lett. 2004, 6: 4913 -
3a
Yadav JS.Reddy BVS.Madhuri C.Sabitha G.Jagannadh B.Kumar SK.Kunwar AC. Tetrahedron Lett. 2001, 42: 6381 -
3b
Anniyappan M.Muralidharan D.Perumal Paramasivan T. Tetrahedron 2002, 58: 10301 -
3c
Wang J.Xu F.-X.Lin X.-F.Wang Y.-G. Tetrahedron Lett. 2008, 49: 5208 -
3d
Rueping M.Lin M.-Y. Chem. Eur. J. 2010, 16: 4169 - 4
Jiménez O.de la Rosa G.Lavilla R. Angew. Chem. Int. Ed. 2005, 44: 6521 - 5
Ghosh AK.Xu C.-X.Kulkarni SS.Wink D. Org. Lett. 2005, 7: 7 -
6a
Li G.Kaplan MJ.Wojtas L.Antilla JC. Org. Lett. 2010, 12: 1960 -
6b
Cakir SP.Mead KT. Synthesis 2008, 871 -
7a
Momiyama N.Nishimoto H.Terada M. Org. Lett. 2011, 13: 2126 -
7b
Friestad GK.Korapala CS.Ding H. J. Org. Chem. 2006, 71: 281 -
7c
Kiyohara H.Nakamura Y.Matsubara R.Kobayashi S. Angew. Chem. Int. Ed. 2006, 45: 1615 -
7d
Ollevier T.Ba T. Tetrahedron Lett. 2003, 45: 9003 -
7e
Brown RCD.Fisher ML.Brown LJ. Org. Biomol. Chem. 2003, 1: 2699 -
7f
Friestad GK.Ding H. Angew. Chem. Int. Ed. 2001, 40: 4491 -
7g
Uyehara T.Yuuki M.Masaki H.Matsumoto M.Ueno M.Sato T. Chem. Lett. 1995, 24: 789 -
8a
Bates RW.Lu Y.Cai MP. Tetrahedron 2009, 65: 7852 -
8b
Terada M.Machioka K.Sorimachi K. Angew. Chem. Int. Ed. 2009, 48: 2553 -
8c
Liu R.-C.Huang W.Ma JY.Wei B.-G.Lin G.-Q. Tetrahedron Lett. 2009, 50: 4046 -
8d
Myers EL.Vries JG.Aggarwal VK. Angew. Chem. Int. Ed. 2007, 46: 1893 -
8e
Gizecki P.Ait Youcef R.Poulard C.Dhal R.Dujardin G. Tetrahedron Lett. 2004, 45: 9589 -
8f
Gizecki P.Dhal R.Poulard C.Gosselin P.Dujardin G. J. Org. Chem. 2003, 68: 4338 -
8g
Chao W.Weinreb SM. Tetrahedron Lett. 2000, 41: 9199 - Recent examples concerning the synthetic application of oxazines, see:
-
9a
Mulzer M.Coates GW. Org. Lett. 2011, 13: 1426 -
9b
Lee YM.Baek DJ.Lee S.Kim D.Kim S. J. Org. Chem. 2011, 76: 408 -
9c
Liu Z.Byun H.-S.Bittman R. Org. Lett. 2010, 12: 2974 -
9d
Pham V.-T.Joo J.-E.Lee K.-Y.Kim T.-W.Mu Y.Ham W.-H. Tetrahedron 2010, 66: 2123 - 10 Compared to their carbon analogues,
organosilicon compounds exhibit enhanced lipophilicity, stronger
OH affinity, and more electropositive character:
Bains W.Tacke R. Curr. Opin. Drug Discovery Dev. 2003, 6: 526 - 11 For details on the stereochemistry
assignment of 4,6-disubstituted 1,3-oxzines, see:
Katritzky AR.Ghiviriga I.Chen K.Tymoshenko DO.Abdel-Fattah AAA.
J. Chem. Soc., Perkin Trans. 2 2001, 530
Reference and Notes
Typical Procedure
for the Preparation of Oxazines (13b)
To a mixture
of 11a (1 mmol), tert-butyl
trimethyl allyl silane (1 mmol) and CH2Cl2 (10
mL) was added TMSOTf (0.16 mL, 1 mmol) dropwise at -78 ˚C.
After stirring at the same temperature for 1 h, the reaction was
quenched by the addition of sat. NaHCO3 solution (10
mL). The resulting mixture was extracted with CH2Cl2 (3 × 10
mL). The combined organic extracts were washed with brine, dried over
Na2SO4. Removal of the solvent provided the
residue which was purified by flash chromatography to afford trans-13b (244
mg, 67%) and cis-13b (40.7
mg, 11%) as colorless oils.
trans-13b: ¹H NMR (400 MHZ,
CDCl3): δ = 7.94 (d, J = 8.0 Hz,
2 H), 7.34-7.13 (m, 8 H), 4.63 (dd, J = 11.6,
4.8 Hz, 1 H), 4.47-4.40 (m, 1 H), 2.23-2.18 (m,
1 H), 1.47 (dd, J = 24.4,
11.6 Hz, 1 H), 1.05 (dd, J = 14.8,
8.0 Hz, 1 H), 0.87 (dd, J = 14.8,
6.0 Hz, 1 H), 0.81 (s, 9 H), 0.05 (s, 3 H), 0.00 (s, 3 H). ¹³C
NMR (100 MHz, CDCl3): δ = 156.4,
144.7, 134.2, 130.4, 128.4, 128.0, 127.4, 126.7, 126.4, 74.2, 57.1, 40.6,
26.4, 20.3, 16.5, -4.8, -5.3. ESI-MS: m/z = 366 [M + 1].
Anal. Calcd for C23H31NOSi: C, 75.56; H, 8.55;
N, 3.83. Found: C, 75.47; H, 8.37, N, 3.95.
cis-13b: ¹H
NMR (400 MHz, CDCl3): δ = 8.02
(d, J = 8.0 Hz,
2 H), 7.41-7.20 (m, 8 H), 4.88 (t, J = 4.8
Hz, 1 H), 4.29-4.23 (m, 1 H), 2.06-1.95 (m, 2
H), 1.17 (dd, J = 14.4,
8.0 Hz, 1 H), 0.89 (dd, J = 14.8,
6.8 Hz, 1 H), 0.82 (s, 9 H), 0.00 (s, 3 H), -0.05 (s, 3
H). ¹³C NMR (100 MHz, CDCl3): δ = 156.5, 144.5,
134.2, 130.4, 128.3, 128.0, 127.3, 126.8, 126.6, 70.2, 54.3, 37.6,
26.3, 19.8, 16.5, -5.1, -5.3. HRMS: m/z calcd for C23H32NOSi [M + H]+:
366.2253; found: 366.2263.