Reference and Notes
-
For reviews concerning C-C
bond formation using imines as material, see:
-
1a
Yamamoto Y.
Asao N.
Chem. Rev.
1993,
93:
2207
-
1b
Enders D.
Reinhold U.
Tetrahedron: Asymmetry
1997,
8:
1895
-
1c
Bloch R.
Chem.
Rev.
1998,
98:
1407
-
1d
Kobayashi S.
Ishitani H.
Chem. Rev.
1999,
99:
1069
-
1e
Liu M.
Sibi MP.
Tetrahedron
2002,
58:
7991
-
1f
Friestad GF.
Mathies AK.
Tetrahedron
2007,
63:
2541
-
1g
Nugent TC.
El-Shazly M.
Adv. Synth. Catal.
2010,
352:
753
-
For reference on Povarov reaction,
see:
-
2a
Povarov L.
Russ
Chem. Rev.
1967,
36:
656
-
2b
Bello D.
Ramon R.
Lavilla R.
Curr.
Org. Chem.
2010,
14:
332
-
2c
Glushkov VA.
Tolstikov AG.
Russ.
Chem. Rev.
2008,
77:
137
-
2d
Wang S.
Zhao YL.
Zhang W.
Liu Q.
J. Org. Chem.
2007,
72:
4985
-
2e
Akiyama T.
Morita H.
Fuchibe K.
J.
Am. Chem. Soc.
2006,
128:
13070
-
2f
Twin H.
Batey
RA.
Org. Lett.
2004,
6:
4913
-
3a
Yadav JS.
Reddy BVS.
Madhuri C.
Sabitha G.
Jagannadh B.
Kumar SK.
Kunwar AC.
Tetrahedron Lett.
2001,
42:
6381
-
3b
Anniyappan M.
Muralidharan D.
Perumal Paramasivan T.
Tetrahedron
2002,
58:
10301
-
3c
Wang J.
Xu F.-X.
Lin X.-F.
Wang Y.-G.
Tetrahedron Lett.
2008,
49:
5208
-
3d
Rueping M.
Lin
M.-Y.
Chem. Eur. J.
2010,
16:
4169
- 4
Jiménez O.
de la Rosa G.
Lavilla R.
Angew. Chem. Int. Ed.
2005,
44:
6521
- 5
Ghosh AK.
Xu C.-X.
Kulkarni SS.
Wink D.
Org. Lett.
2005,
7:
7
-
6a
Li G.
Kaplan MJ.
Wojtas L.
Antilla JC.
Org.
Lett.
2010,
12:
1960
-
6b
Cakir SP.
Mead KT.
Synthesis
2008,
871
-
7a
Momiyama N.
Nishimoto H.
Terada M.
Org. Lett.
2011,
13:
2126
-
7b
Friestad GK.
Korapala CS.
Ding H.
J. Org. Chem.
2006,
71:
281
-
7c
Kiyohara H.
Nakamura Y.
Matsubara R.
Kobayashi S.
Angew. Chem. Int. Ed.
2006,
45:
1615
-
7d
Ollevier T.
Ba T.
Tetrahedron Lett.
2003,
45:
9003
-
7e
Brown RCD.
Fisher ML.
Brown LJ.
Org. Biomol. Chem.
2003,
1:
2699
-
7f
Friestad GK.
Ding H.
Angew. Chem.
Int. Ed.
2001,
40:
4491
-
7g
Uyehara T.
Yuuki M.
Masaki H.
Matsumoto M.
Ueno M.
Sato T.
Chem.
Lett.
1995,
24:
789
-
8a
Bates RW.
Lu Y.
Cai MP.
Tetrahedron
2009,
65:
7852
-
8b
Terada M.
Machioka K.
Sorimachi K.
Angew. Chem.
Int. Ed.
2009,
48:
2553
-
8c
Liu R.-C.
Huang W.
Ma JY.
Wei B.-G.
Lin G.-Q.
Tetrahedron
Lett.
2009,
50:
4046
-
8d
Myers EL.
Vries JG.
Aggarwal VK.
Angew. Chem. Int. Ed.
2007,
46:
1893
-
8e
Gizecki P.
Ait Youcef R.
Poulard C.
Dhal R.
Dujardin G.
Tetrahedron
Lett.
2004,
45:
9589
-
8f
Gizecki P.
Dhal R.
Poulard C.
Gosselin P.
Dujardin G.
J. Org.
Chem.
2003,
68:
4338
-
8g
Chao W.
Weinreb SM.
Tetrahedron Lett.
2000,
41:
9199
-
Recent examples concerning the synthetic
application of oxazines, see:
-
9a
Mulzer M.
Coates GW.
Org. Lett.
2011,
13:
1426
-
9b
Lee YM.
Baek DJ.
Lee S.
Kim D.
Kim S.
J.
Org. Chem.
2011,
76:
408
-
9c
Liu Z.
Byun H.-S.
Bittman R.
Org.
Lett.
2010,
12:
2974
-
9d
Pham
V.-T.
Joo J.-E.
Lee K.-Y.
Kim T.-W.
Mu Y.
Ham
W.-H.
Tetrahedron
2010,
66:
2123
- 10 Compared to their carbon analogues,
organosilicon compounds exhibit enhanced lipophilicity, stronger
OH affinity, and more electropositive character: Bains W.
Tacke R.
Curr. Opin. Drug Discovery Dev.
2003,
6:
526
- 11 For details on the stereochemistry
assignment of 4,6-disubstituted 1,3-oxzines, see: Katritzky AR.
Ghiviriga I.
Chen K.
Tymoshenko DO.
Abdel-Fattah AAA.
J. Chem. Soc.,
Perkin Trans. 2
2001,
530
12
Typical Procedure
for the Preparation of Oxazines (13b)
To a mixture
of 11a (1 mmol), tert-butyl
trimethyl allyl silane (1 mmol) and CH2Cl2 (10
mL) was added TMSOTf (0.16 mL, 1 mmol) dropwise at -78 ˚C.
After stirring at the same temperature for 1 h, the reaction was
quenched by the addition of sat. NaHCO3 solution (10
mL). The resulting mixture was extracted with CH2Cl2 (3 × 10
mL). The combined organic extracts were washed with brine, dried over
Na2SO4. Removal of the solvent provided the
residue which was purified by flash chromatography to afford trans-13b (244
mg, 67%) and cis-13b (40.7
mg, 11%) as colorless oils.
trans-13b: ¹H NMR (400 MHZ,
CDCl3): δ = 7.94 (d, J = 8.0 Hz,
2 H), 7.34-7.13 (m, 8 H), 4.63 (dd, J = 11.6,
4.8 Hz, 1 H), 4.47-4.40 (m, 1 H), 2.23-2.18 (m,
1 H), 1.47 (dd, J = 24.4,
11.6 Hz, 1 H), 1.05 (dd, J = 14.8,
8.0 Hz, 1 H), 0.87 (dd, J = 14.8,
6.0 Hz, 1 H), 0.81 (s, 9 H), 0.05 (s, 3 H), 0.00 (s, 3 H). ¹³C
NMR (100 MHz, CDCl3): δ = 156.4,
144.7, 134.2, 130.4, 128.4, 128.0, 127.4, 126.7, 126.4, 74.2, 57.1, 40.6,
26.4, 20.3, 16.5, -4.8, -5.3. ESI-MS: m/z = 366 [M + 1].
Anal. Calcd for C23H31NOSi: C, 75.56; H, 8.55;
N, 3.83. Found: C, 75.47; H, 8.37, N, 3.95.
cis-13b: ¹H
NMR (400 MHz, CDCl3): δ = 8.02
(d, J = 8.0 Hz,
2 H), 7.41-7.20 (m, 8 H), 4.88 (t, J = 4.8
Hz, 1 H), 4.29-4.23 (m, 1 H), 2.06-1.95 (m, 2
H), 1.17 (dd, J = 14.4,
8.0 Hz, 1 H), 0.89 (dd, J = 14.8,
6.8 Hz, 1 H), 0.82 (s, 9 H), 0.00 (s, 3 H), -0.05 (s, 3
H). ¹³C NMR (100 MHz, CDCl3): δ = 156.5, 144.5,
134.2, 130.4, 128.3, 128.0, 127.3, 126.8, 126.6, 70.2, 54.3, 37.6,
26.3, 19.8, 16.5, -5.1, -5.3. HRMS: m/z calcd for C23H32NOSi [M + H]+:
366.2253; found: 366.2263.