Subscribe to RSS
DOI: 10.1055/s-0031-1289903
Concise Diverted Total Synthesis of Amphidinolide T1 and T4 from a (12E)-Cycloalkene by Selective Functionalization of the C12-C13 Double Bond
Publication History
Publication Date:
23 November 2011 (online)
Abstract
Starting from a 19-membered (12E)-cycloalkene prepared by ring-closing metathesis, amphidinolide T1 and T4 were efficiently synthesized via a short sequence of selective functionalization. The key steps highlighted stereoselective dihydroxylation of the (E)-C12-C13 double bond and highly regioselective silylation/desilylation of the (12S,13S)-diol. In particular, a significant solvent effect was discovered for suppressing 1,4 O→O silyl migration or disilylation during selective mono-silylation of the (12R,13R)- and (12S,13S)-diols in toluene. In combination with our previous synthesis of amphidinolide T3, the same (12E)-cycloalkene serves as an advanced common intermediate for concise diverted total synthesis of amphidinolide T family of marine macrolides.
Key words
alkenes - dihydroxylation - macrocycles - osmium - total synthesis
- Supporting Information for this article is available online:
- Supporting Information
- For reviews, see:
-
1a
Wilson RM.Danishefsky SJ. J. Org. Chem. 2006, 71: 8329 -
1b
Cragg GM.Grothaus PG.Newman DJ. Chem. Rev. 2009, 109: 3012 -
1c
Szpilman AM.Carreira EM. Angew. Chem. Int. Ed. 2010, 49: 9592 -
1d
Fürstner A. Isr. J. Chem. 2011, 51: 329 -
1e Also, see:
Wender PA.Miller BL. Nature (London) 2009, 460: 197 -
1f
Ghosh AK. J. Org. Chem. 2010, 75: 7967 - For reviews, see:
-
2a
Kobayashi J.Tsuda M. Nat. Prod. Rep. 2004, 21: 77 -
2b
Kobayashi J.Kubota T. J. Nat. Prod. 2007, 70: 451 -
2c
Kobayashi J. J. Antibiot. 2008, 61: 271 -
3a
Tsuda M.Endo T.Kobayashi J. J. Org. Chem. 2000, 65: 1349 -
3b
Kobayashi J.Kubota T.Endo T.Tsuda M. J. Org. Chem. 2001, 66: 134 -
3c
Kubota T.Endo T.Tsuda M.Shiro M.Kobayashi J. Tetrahedron 2001, 57: 6175 - For total synthesis of amphidinolide T1, see:
-
4a
Ghosh AK.Liu C. J. Am. Chem. Soc. 2003, 125: 2374 -
4b
Aïssa C.Riveiros R.Ragot J.Fürstner A. J. Am. Chem. Soc. 2003, 125: 15512 -
4c
Colby EA.O’Brien KC.Jamison TF. J. Am. Chem. Soc. 2004, 126: 998 -
4d
Colby EA.O’Brien KC.Jamison TF. J. Am. Chem. Soc. 2005, 127: 4297 -
4e
Yadav JS.Reddy CS. Org. Lett. 2009, 11: 1705 - 5 For total synthesis of amphidinolide
T2, see:
Li H.Wu J.Luo J.Dai W.-M. Chem. Eur. J. 2010, 16: 11530 - For total synthesis of amphidinolide T3, see:
-
6a
Deng L.-S.Huang X.-P.Zhao G. J. Org. Chem. 2006, 71: 4625 -
6b
Wu D.Li H.Jin J.Wu J.Dai W.-M. Synlett 2011, 895 -
6c
See ref. 4b.
- For total synthesis of amphidinolide T4, see:
-
7a
Fürstner A.Aïssa C.Riveiros R.Ragot J. Angew. Chem. Int. Ed. 2002, 41: 4763 -
7b
See also refs. 4b and 4d.
- For synthesis of fragments, see:
-
8a
O’Brien KC.Colby EA.Jamison TF. Tetrahedron 2005, 61: 6243 -
8b
Abbineni C.Sasmal PK.Mukkanti K.Iqbal J. Tetrahedron Lett. 2007, 48: 4259 -
8c
Luo J.Li H.Wu J.Xing X.Dai W.-M. Tetrahedron 2009, 65: 6828 -
8d
Sasmal PK.Abbineni C.Iqbal J.Mukkanti K. Tetrahedron 2010, 66: 5000 -
8e
Clark JS.Labre F.Thomas LH. Org. Biomol. Chem. 2011, 9: 4823 - For selective reviews on RCM, see:
-
9a
Grubbs RH.Chang S. Tetrahedron 1998, 54: 4413 -
9b
Fürstner A. Angew. Chem. Int. Ed. 2000, 39: 3012 -
9c
Trnka TM.Grubbs RH. Acc. Chem. Res. 2001, 34: 18 -
9d
Schrock RR.Hoveyda AH. Angew. Chem. Int. Ed. 2003, 42: 4592 -
9e
Deiters A.Martin SF. Chem. Rev. 2004, 104: 2199 -
9f
Grubbs RH. Tetrahedron 2004, 60: 7117 -
9g
Nicolaou KC.Bulger PG.Sarlah D. Angew. Chem. Int. Ed. 2005, 44: 4490 -
9h
Gradillas A.Pérez-Castells J. Angew. Chem. Int. Ed. 2006, 45: 6086 -
9i
Schrodi Y.Pederson RL. Aldrichimica Acta 2007, 40: 45 -
9j
Hoveyda AH.Zhugralin AR. Nature (London) 2007, 450: 243 -
9k Also see:
Handbook of Metathesis
Vol.
1:
Grubbs RH. Wiley-VCH; Weinheim: 2003. -
9l
Handbook
of Metathesis
Vol. 2:
Grubbs RH. Wiley-VCH; Weinheim: 2003. -
9m
Handbook
of Metathesis
Vol. 3:
Grubbs RH. Wiley-VCH; Weinheim: 2003. - For recent reviews on AD, see:
-
10a
Zaitsev AB.Adolfsson H. Synthesis 2006, 1725 -
10b
Français A.Bedel O.Haudrechy A. Tetrahedron 2008, 64: 2495 - For our total synthesis of macrolides using RCM strategy, see:
-
11a
Chen Y.Jin J.Wu J.Dai W.-M. Synlett 2006, 1177 -
11b
Jin J.Chen Y.Wu J.Dai W.-M. Org. Lett. 2007, 9: 2585 -
11c
Dai W.-M.Chen Y.Jin J.Wu J.Lou J.He Q. Synlett 2008, 1737 -
11d
Sun L.Feng G.Guan Y.Liu Y.Wu J.Dai W.-M. Synlett 2009, 2361 -
11e
Liu Y.Wang J.Li H.Wu J.Feng G.Dai W.-M. Synlett 2010, 2184 -
11f
Liu Y.Feng G.Wang J.Wu J.Dai W.-M. Synlett 2011, 1774 - For selected examples of 1,4 O→O silyl migration, see:
-
12a
Ogilvie KK.Beaucage SL.Schifman AL.Theriault NY.Sadana KL. Can. J. Chem. 1978, 56: 2768 -
12b
Jones SS.Reese CB. J. Chem. Soc., Perkin Trans. 1 1979, 2762 -
12c
Evans DA.Gauchet-Prunet JA.Carreira EM.Charette AB. J. Org. Chem. 1991, 56: 741 -
12d
Yamazaki T.Mizutani K.Kitazume T. J. Org. Chem. 1993, 58: 4346 -
12e
Yamazaki T.Oniki T.Kitazume T. Tetrahedron 1996, 52: 11753 -
12f
Lassaletta JM.Schmidt RR. Synlett 1995, 925 -
12g
Lassaletta JM.Meichle M.Weiler S.Schmidt RR. J. Carbohydr. Chem. 1996, 15: 241 -
12h
Masaguer CF.Blériot Y.Charlwood J.Winchester BG.Leet GWJ. Tetrahedron 1997, 53: 15147 -
12i
Boger DL.Ichikawa S.Zhong W. J. Am. Chem. Soc. 2001, 123: 4161 -
12j
Hunter TJ.O’Doherty GA. Org. Lett. 2001, 3: 1049 -
12k
Teranish K.Ueno F. Tetrahedron Lett. 2003, 44: 4843 -
12l
Zhao ZQ.Peng LZ.Li YL. Chin. Chem. Lett. 2005, 16: 290 -
12m
Perali RS.Mandava S.Chunduri VR. Tetrahedron Lett. 2011, 52: 3045 -
12n Also see:
Rücher C. Chem. Rev. 1995, 95: 1009 -
12o
Wuts PGM.Greene TW. Greene’s Protective Groups in Organic Synthesis 4th ed.: John Wiley & Sons; New Jersey: 2007. p.166
References and Notes
Chem3D models show that the (13R)-OH group in 5 orients opposite to both the (12R)-OH and the (14R)-Me groups while (13S)-OH group in 6 aligns closely with both the (12S)-OH and the (14R)-Me groups. It should be possible for hydrogen bonding or 1,4 O→O silyl migration to take place in 6 but not in 5.
14
Characterization
Data for Amphidinolide T4 (3): colorless oil; [α]D
²0 -9.6
(c = 0.12, CHCl3),
lit.4b,4d,7a [α]D
²³
-7.5
(c = 0.8, CHCl3), [α]D
²0 -3.0
(c = 0.12, CHCl3); R
f
0.35 (20% EtOAc
in hexane). IR (film): 3458 (br), 2934, 1724, 1459, 1252, 1071 cm-¹. ¹H
NMR and ¹³C NMR data are identical
to those of natural amphidinolide T4 (see Figures S3 and S4 in the
Supporting Information). HRMS (+ESI):
m/z [M + H+] calcd
for C25H43O5: 423.3111; found: 423.3116.
Characterization Data for Amphidinolide T1 (1): colorless oil; [α]D ²0 +20.3 (c = 0.15, CHCl3), lit.³a [α]D ²0 +18 (c = 0.3, CHCl3); R f 0.27 (17% EtOAc in hexane). IR (film): 3401 (br), 2928, 1727, 1463, 1253, 1060 cm-¹; ¹H NMR and ¹³C NMR data are identical to those of natural amphidinolide T1 (see Figures S1 and S2 in the Supporting Information). HRMS (+ESI): m/z [M + H+] calcd for C25H43O5: 423.3111; found: 423.3104.