Abstract
Starting from a 19-membered (12E )-cycloalkene
prepared by ring-closing metathesis, amphidinolide T1 and T4 were efficiently
synthesized via a short sequence of selective functionalization.
The key steps highlighted stereoselective dihydroxylation of the
(E )-C12-C13 double bond and
highly regioselective silylation/desilylation of the (12S ,13S )-diol.
In particular, a significant solvent effect was discovered for suppressing
1,4 O→O silyl migration or disilylation during selective
mono-silylation of the (12R ,13R )- and (12S ,13S )-diols in toluene. In combination with
our previous synthesis of amphidinolide T3, the same (12E )-cycloalkene serves as an
advanced common intermediate for concise diverted total synthesis
of amphidinolide T family of marine macrolides.
Key words
alkenes - dihydroxylation - macrocycles - osmium - total synthesis
References and Notes
For reviews, see:
1a
Wilson RM.
Danishefsky SJ.
J.
Org. Chem.
2006,
71:
8329
1b
Cragg GM.
Grothaus PG.
Newman DJ.
Chem. Rev.
2009,
109:
3012
1c
Szpilman AM.
Carreira EM.
Angew.
Chem. Int. Ed.
2010,
49:
9592
1d
Fürstner A.
Isr. J. Chem.
2011,
51:
329
1e Also, see: Wender PA.
Miller BL.
Nature
(London)
2009,
460:
197
1f
Ghosh AK.
J. Org. Chem.
2010,
75:
7967
For reviews, see:
2a
Kobayashi J.
Tsuda M.
Nat. Prod. Rep.
2004,
21:
77
2b
Kobayashi J.
Kubota T.
J. Nat. Prod.
2007,
70:
451
2c
Kobayashi J.
J.
Antibiot.
2008,
61:
271
3a
Tsuda M.
Endo T.
Kobayashi J.
J. Org. Chem.
2000,
65:
1349
3b
Kobayashi J.
Kubota T.
Endo T.
Tsuda M.
J. Org. Chem.
2001,
66:
134
3c
Kubota T.
Endo T.
Tsuda M.
Shiro M.
Kobayashi J.
Tetrahedron
2001,
57:
6175
For total synthesis of amphidinolide
T1, see:
4a
Ghosh AK.
Liu C.
J. Am. Chem.
Soc.
2003,
125:
2374
4b
Aïssa C.
Riveiros R.
Ragot J.
Fürstner A.
J.
Am. Chem. Soc.
2003,
125:
15512
4c
Colby EA.
O’Brien KC.
Jamison TF.
J. Am. Chem. Soc.
2004,
126:
998
4d
Colby EA.
O’Brien KC.
Jamison TF.
J. Am. Chem. Soc.
2005,
127:
4297
4e
Yadav JS.
Reddy CS.
Org.
Lett.
2009,
11:
1705
5 For total synthesis of amphidinolide
T2, see: Li H.
Wu J.
Luo J.
Dai W.-M.
Chem.
Eur. J.
2010,
16:
11530
For total synthesis of amphidinolide
T3, see:
6a
Deng
L.-S.
Huang X.-P.
Zhao G.
J.
Org. Chem.
2006,
71:
4625
6b
Wu D.
Li H.
Jin J.
Wu J.
Dai W.-M.
Synlett
2011,
895
6c See ref. 4b.
For total synthesis of amphidinolide
T4, see:
7a
Fürstner A.
Aïssa C.
Riveiros R.
Ragot J.
Angew. Chem.
Int. Ed.
2002,
41:
4763
7b See also refs. 4b and
4d.
For synthesis of fragments, see:
8a
O’Brien KC.
Colby EA.
Jamison TF.
Tetrahedron
2005,
61:
6243
8b
Abbineni C.
Sasmal PK.
Mukkanti K.
Iqbal J.
Tetrahedron Lett.
2007,
48:
4259
8c
Luo J.
Li H.
Wu J.
Xing X.
Dai W.-M.
Tetrahedron
2009,
65:
6828
8d
Sasmal PK.
Abbineni C.
Iqbal J.
Mukkanti K.
Tetrahedron
2010,
66:
5000
8e
Clark JS.
Labre F.
Thomas LH.
Org. Biomol. Chem.
2011,
9:
4823
For selective reviews on RCM, see:
9a
Grubbs RH.
Chang S.
Tetrahedron
1998,
54:
4413
9b
Fürstner A.
Angew. Chem. Int. Ed.
2000,
39:
3012
9c
Trnka TM.
Grubbs RH.
Acc.
Chem. Res.
2001,
34:
18
9d
Schrock RR.
Hoveyda AH.
Angew.
Chem. Int. Ed.
2003,
42:
4592
9e
Deiters A.
Martin SF.
Chem. Rev.
2004,
104:
2199
9f
Grubbs RH.
Tetrahedron
2004,
60:
7117
9g
Nicolaou KC.
Bulger PG.
Sarlah D.
Angew. Chem. Int. Ed.
2005,
44:
4490
9h
Gradillas A.
Pérez-Castells J.
Angew. Chem.
Int. Ed.
2006,
45:
6086
9i
Schrodi Y.
Pederson RL.
Aldrichimica Acta
2007,
40:
45
9j
Hoveyda AH.
Zhugralin AR.
Nature
(London)
2007,
450:
243
9k Also see:
Handbook of Metathesis
Vol.
1:
Grubbs RH.
Wiley-VCH;
Weinheim:
2003.
9l
Handbook
of Metathesis
Vol. 2:
Grubbs RH.
Wiley-VCH;
Weinheim:
2003.
9m
Handbook
of Metathesis
Vol. 3:
Grubbs RH.
Wiley-VCH;
Weinheim:
2003.
For recent reviews on AD, see:
10a
Zaitsev AB.
Adolfsson H.
Synthesis
2006,
1725
10b
Français A.
Bedel O.
Haudrechy A.
Tetrahedron
2008,
64:
2495
For our total synthesis of macrolides
using RCM strategy, see:
11a
Chen Y.
Jin J.
Wu J.
Dai W.-M.
Synlett
2006,
1177
11b
Jin J.
Chen Y.
Wu J.
Dai W.-M.
Org. Lett.
2007,
9:
2585
11c
Dai W.-M.
Chen Y.
Jin J.
Wu J.
Lou J.
He Q.
Synlett
2008,
1737
11d
Sun L.
Feng G.
Guan Y.
Liu Y.
Wu J.
Dai W.-M.
Synlett
2009,
2361
11e
Liu Y.
Wang J.
Li H.
Wu J.
Feng G.
Dai W.-M.
Synlett
2010,
2184
11f
Liu Y.
Feng G.
Wang J.
Wu J.
Dai
W.-M.
Synlett
2011,
1774
For selected examples of 1,4 O→O
silyl migration, see:
12a
Ogilvie KK.
Beaucage SL.
Schifman AL.
Theriault NY.
Sadana KL.
Can. J. Chem.
1978,
56:
2768
12b
Jones SS.
Reese CB.
J.
Chem. Soc., Perkin Trans. 1
1979,
2762
12c
Evans DA.
Gauchet-Prunet JA.
Carreira EM.
Charette AB.
J. Org. Chem.
1991,
56:
741
12d
Yamazaki T.
Mizutani K.
Kitazume T.
J.
Org. Chem.
1993,
58:
4346
12e
Yamazaki T.
Oniki T.
Kitazume T.
Tetrahedron
1996,
52:
11753
12f
Lassaletta JM.
Schmidt RR.
Synlett
1995,
925
12g
Lassaletta JM.
Meichle M.
Weiler S.
Schmidt RR.
J.
Carbohydr. Chem.
1996,
15:
241
12h
Masaguer CF.
Blériot Y.
Charlwood J.
Winchester BG.
Leet GWJ.
Tetrahedron
1997,
53:
15147
12i
Boger DL.
Ichikawa S.
Zhong W.
J. Am. Chem. Soc.
2001,
123:
4161
12j
Hunter TJ.
O’Doherty GA.
Org.
Lett.
2001,
3:
1049
12k
Teranish K.
Ueno F.
Tetrahedron Lett.
2003,
44:
4843
12l
Zhao ZQ.
Peng LZ.
Li YL.
Chin. Chem. Lett.
2005,
16:
290
12m
Perali RS.
Mandava S.
Chunduri VR.
Tetrahedron Lett.
2011,
52:
3045
12n Also see: Rücher C.
Chem. Rev.
1995,
95:
1009
12o
Wuts PGM.
Greene TW.
Greene’s Protective Groups in Organic
Synthesis
4th ed.:
John Wiley & Sons;
New
Jersey:
2007.
p.166
13 Chem3D models show that the (13R )-OH group in 5 orients opposite
to both the (12R )-OH and the (14R )-Me groups while (13S )-OH
group in 6 aligns closely with both the (12S )-OH and the (14R )-Me
groups. It should be possible for hydrogen bonding or 1,4 O→O
silyl migration to take place in 6 but
not in 5 .
14
Characterization
Data for Amphidinolide T4 (3) : colorless oil; [α]D
²0 -9.6
(c = 0.12, CHCl3 ),
lit.4b,4d,7a [α]D
²³
-7.5
(c = 0.8, CHCl3 ), [α]D
²0 -3.0
(c = 0.12, CHCl3 ); R
f
0.35 (20% EtOAc
in hexane). IR (film): 3458 (br), 2934, 1724, 1459, 1252, 1071 cm-¹ . ¹ H
NMR and ¹³ C NMR data are identical
to those of natural amphidinolide T4 (see Figures S3 and S4 in the
Supporting Information). HRMS (+ESI):
m /z [M + H+ ] calcd
for C25 H43 O5 : 423.3111; found: 423.3116.
15
Characterization
Data for Amphidinolide T1 (1) : colorless oil; [α]D
²0 +20.3
(c = 0.15, CHCl3 ),
lit.³a [α]D
²0 +18 (c = 0.3, CHCl3 );
R
f
0.27 (17% EtOAc
in hexane). IR (film): 3401 (br), 2928, 1727, 1463, 1253, 1060 cm-¹ ; ¹ H
NMR and ¹³ C NMR data are identical
to those of natural amphidinolide T1 (see Figures S1 and S2 in the
Supporting Information). HRMS (+ESI): m /z [M + H+ ] calcd
for C25 H43 O5 : 423.3111; found:
423.3104.