Synlett 2011(20): 3046-3052  
DOI: 10.1055/s-0031-1289904
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

An Eficient One-Pot Synthesis of Macrocyclic Compounds Possessing Propargylamine Skeletons via Mannich Reaction

Tao Pang, Qinwan Yang, Meng Gao, Meng Wang, Anxin Wu*
Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Central China Normal University, Wuhan 430079, P. R. of China
e-Mail: chwuax@mail.ccnu.edu.cn;
Further Information

Publication History

Received 12 September 2011
Publication Date:
23 November 2011 (online)

Abstract

A new efficient method using the Mannich three-component reaction in one pot to synthesize [1+2+1]- and [2+4+2]-macrocyclic compounds possessing a propargylamine backbone was reported. Interestingly, 1,4-diazepane as a multiuse reagent played the part of a substrate to participate in the Mannich reaction and acted as a base to promote the Eglinton-Glaser dimerizations in the coordination processes simultaneously via a one-pot procedure. The target macrocycles were obtained in good yields.

    References

  • 1a Wessjohann LA. Rivera DG. Vercillo OE. Chem. Rev.  2009,  109:  796 
  • 1b Wessjohann LA. Ruijter E. Rivera DG. Brandt W. Mol. Diversity  2005,  9:  171 
  • 1c Wessjohann LA. Curr. Opin. Chem. Biol.  2000,  4:  303 
  • 1d Breinbauer R. Vetter IR. Waldmann H. Angew. Chem. Int. Ed.  2002,  41:  2878 
  • 1e Driggers EM. Hale SP. Lee J. Terrett NK. Nat. Rev.  2008,  7:  608 
  • 2a Newman DJ. Cragg GM. Snader KM. J. Nat. Prod.  2007,  70:  461 
  • 2b Wessjohann LA. Ruijter E. Top. Curr. Chem.  2005,  243:  137 
  • 2c Shu Y.-Z. J. Nat. Prod.  1998,  61:  1053 
  • 2d Lehn J.-M. Supramolecular Chemistry: Concepts and Perspectives   Wiley-VCH; Weinheim: 1995. 
  • 2e Vögtle F. Supramolecular Chemistry   Wiley and Sons; Chichester: 1991. 
  • For reviews on multicomponent reactions, see:
  • 3a Bariwal JB. Ermolat’ev DS. Van der Eycken EV. Chem. Eur. J.  2010,  16:  3281 
  • 3b Multicomponent Reactions   Zhu JP. Bienaymé H. Wiley-VCH; Weinheim: 2005. 
  • 3c Ramón DJ. Yus M. Angew. Chem. Int. Ed.  2005,  44:  1602 
  • 3d Simon C. Constantieux T. Rodriguez J. Eur. J. Org. Chem.  2004,  4957 
  • 3e Ugi I. Dömling A. Werner B. J. Heterocycl. Chem.  2000,  37:  647 
  • 3f Weber L. Illgen K. Almstetter M. Synlett  1999,  366 
  • 3g Armstrong RW. Combs AP. Tempest PA. Brown SD. Keating TA. Acc. Chem. Res.  1996,  29:  123 
  • For selected examples of the Ugi-4CR, see:
  • 4a Wessjohann LA. Rivera DG. León F. Org. Lett.  2007,  9:  4733 
  • 4b Michalik D. Schaks A. Wessjohann LA. Eur. J. Org. Chem.  2007,  149 
  • 4c Westermann B. Michalik D. Schaks A. Kreye O. Wagner C. Merzweiler K. Wessjohann LA. Heterocycles  2007,  73:  863 
  • 4d Rivera DG. Vercillo OE. Wessjohann LA. Synlett  2007,  308 
  • 4e Wessjohann LA. Rivera DG. Coll F. J. Org. Chem.  2006,  71:  7521 
  • 4f Kreye O. Westermann B. Rivera DG. Johnson DV. Orru RVA. Wessjohann LA. QSAR Comb. Sci.  2006,  25:  461 
  • 4g Cristau P. Temal-Laïb T. Bois-Choussy M. Martin M.-T. Vors J.-P. Zhu J. Chem. Eur. J.  2005,  11:  2668 
  • 4h Beck B. Picard A. Herdtweck E. Dömling A. Org. Lett.  2004,  6:  39 
  • 4i Schreiber SL. Chem. Eng. News  2003,  81 (9):  51 
  • 4j Janvier P. Bois-Choussy M. Bienaymé H. Zhu J. Angew. Chem. Int. Ed.  2003,  42:  811 
  • 4k Temal-Laib T. Chastanet J. Zhu J. J. Am. Chem. Soc.  2002,  124:  583 
  • For selected examples of Passerini-3CR, see:
  • 5a León F. Rivera DG. Wessjohann LA. J. Org. Chem.  2008,  73:  1762 
  • 5b Wessjohann LA. Kleber Z. Andrade C. Vercillo OE. Rivera DG. Targets Heterocycl. Syst.  2006,  10:  24 
  • 5c Blankenstein J. Zhu J. Eur. J. Org. Chem.  2005,  1949 
  • 5d Rowan SJ. Hamilton DG. Brandy PA. Sanders JKM. J. Am. Chem. Soc.  1997,  119:  2578 
  • 5e Cort AD. Ercolani G. Iamiceli AL. Mandolini L. Mencarelli P. J. Am. Chem. Soc.  1994,  116:  7081 
  • 5f Ercolani G. Mandolini L. Mencarelli P. Roelens S.
    J. Am. Chem. Soc.  1993,  115:  3901 
  • For selected examples of the Staudinger-3CR, see:
  • 6a Sierra MA. Pellico D. Gómez-Gallego M. Manchego MJ. Torres R. J. Org. Chem.  2006,  71:  8787 
  • 6b Arumugan N. Raghunathan R. Tetrahedron Lett.  2006,  47:  8855 
  • 6c Palomo C. Aizpurua JM. Ganboa I. Oiarbide M. Eur. J. Org. Chem.  1999,  3223 
  • 7 For selected examples of the Petasis reaction, see: Petasis NA. In Multicomponent Reactions   Zhu J. Bienyamé H. Wiley-VCH; Weinheim: 2005.  p.119 
  • For selected examples of the Mannich reaction, see:
  • 8a Mani G. Jana D. Kumar R. Ghorai D. Org. Lett.  2010,  12:  3212 
  • 8b Mani G. Guchhait T. Kumar R. Kumar S. Org. Lett.  2010,  12:  3910 
  • 8c Beyeh NK. Valkonen A. Rissanen K. Org. Lett.  2010,  12:  1392 
  • 8d Rivera A. Quevedo R. Tetrahedron Lett.  2004,  45:  8335 
  • 8e Airola K. Böhmer V. Paulus EF. Rissanen K. Schmidt C. Thondorf I. Vogt W. Tetrahedron  1997,  53:  10709 
  • 8f Iwanek W. Mattay J. Liebigs Ann.  1995,  1463 
  • 9a Miura M. Enna M. Okuro K. Nomura M. J. Org. Chem.  1995,  60:  4999 
  • 9b Jenmalm A. Berts W. Li YL. Luthman K. Csoregh I. Hacksell U. J. Org. Chem.  1994,  59:  1139 
  • 10a Dyker G. Angew. Chem. Int. Ed.  1999,  38:  1698 
  • 10b Naota T. Takaya H. Murahashi SI. Chem. Rev.  1998,  98:  2599 
  • 10c Huffman MA. Yasuda N. DeCamp AE. Grabowski EJJ. J. Org. Chem.  1995,  60:  1590 
  • 10d Konishi M. Ohkuma H. Tsuno T. Oki T. VanDuyne GD. Clardy J. J. Am. Chem. Soc.  1990,  112:  3715 
  • 11a Zhang Y. Li P. Wang M. Wang L. J. Org. Chem.  2009,  74:  4364 
  • 11b Li P. Zhang Y. Wang L. Chem. Eur. J.  2009,  15:  2045 
  • 11c Kumar V. Chipeleme A. Chibale K. Eur. J. Org. Chem.  2008,  43 
  • 11d Lo VK.-Y. Liu Y. Wong M.-K. Che C.-M. Org. Lett.  2006,  8:  1529 
  • 11e Li P. Wang L. Chin. J. Chem.  2005,  23:  1076 
  • 11f Shi L. Tu YQ. Wang M. Zhang FM. Fan CA. Org. Lett.  2004,  6:  1001 
  • 11g Sakaguchi S. Mizuta T. Furuwan M. Kubo T. Ishii Y. Chem. Commun.  2004,  1638 
  • 11h Bieber LW. Silva MF. Tetrahedron Lett.  2004,  45:  8281 
  • 11i Jiang B. Si Y.-G. Tetrahedron Lett.  2003,  44:  6767 
  • 11j Wei C. Li Z. Li C.-J. Org. Lett.  2003,  5:  4473 
  • 11k Wei C. Li C.-J. J. Am. Chem. Soc.  2003,  125:  9584 
  • 11l Huma HZS. Halder R. Kalra SS. Dasb J. Iqbala J. Tetrahedron Lett.  2002,  43:  6485 
  • 11m Li C.-J. Wei C. Chem. Commun.  2002,  268 
  • 11n Sharba AH. Ahbath Al-Yarmouk,  Basic Sci. Eng.  2002,  11 (2A):  655 
  • 11o Kabalka GW. Wang L. Pagni RM. Synlett  2001,  676 
  • 11p Fischer C. Carreira EM. Org. Lett.  2001,  3:  4319 
  • 11q Sakaguchi S. Kubo T. Ishii Y. Angew. Chem. Int. Ed.  2001,  40:  2534 
  • 18a Crowley JD. Goldup SM. Gowans ND. Leigh DA. Ronaldson VE. Slawin AMZ. J. Am. Chem. Soc.  2010,  132:  6243 
  • 18b Do H.-Q. Daugulis O. J. Am. Chem. Soc.  2009,  131:  17052 
  • 18c Glaser C. Ber. Dtsch. Chem. Ges.  1869,  2:  422 
12

Crystal Structure Data for Compound L1 CCDC 815275, C18H20N2O2; MW = 296.36; monoclinic; space group: P2 (1)/c, a = 10.715 (3), b = 5.4373 (13), c = 26.758 (6) Å, α = 90.00˚, β = 92.176 (4)˚, γ = 90.00˚; V = 1557.8 (6) ų; T = 150 (2) K; Z = 4; D C = 1.264 Mg/m³; µ = 0.083 mm; λ = 0.71073 Å; F(000) = 632; crystal size: 0.16 × 0.10 × 0.10 mm³; 3376 independent reflections [R(int) = 0.0940], reflections collected 10246; refinement method: full-matrix least-squares on F²: goodness-of-fit on F² 1.093; final R indices [I > 2σ(I)], R1 = 0.0752, wR2 = 0.1847, largest diff. peak and hole 0.390 Åand
-0.242 e Å.

13

Crystal Structure Data for Compound L2 CCDC 848122, C36H38Cl2N4O4; MW = 661.60; triclinic; space group: P1, a = 7.6628 (19), b = 10.062 (3), c = 11.528 (3) Å, α = 91.301 (4)˚, β = 93.047 (4)˚, γ = 112.314 (4)˚; V = 820.2 (4) ų, T = 298 (2) K, Z = 1, D C = 1.339 Mg/m³, µ = 0.244 mm, λ = 0.71073 Å, F(000) = 348; crystal size: 0.16 × 0.12 × 0.10 mm³; 2844 independent reflections [R(int) = 0.0183], reflections collected 4852; refinement method: full-matrix least-squares on F²: goodness-of-fit on F² 1.069; final R indices [I > 2σ(I)], R1 = 0.0706, wR2 = 0.1746, largest diff. peak and hole 0.273 Åand -0.278 e Å.

14

Crystal Structure Data for Compound S3 CCDC 832859, C27H30N2O2, MW = 414.53; monoclinic; space group: C2/c, a = 13.946 (2) Å, b = 18.635 (3) Å, c = 9.1650 (14) Å, α = 90.00˚, β = 107.492 (2)˚, γ = 90.00˚, V = 2271.6 (6) ų, T = 298 (2) K, Z = 4, D C = 1.212 Mg/m³, µ = 0.076 mm, λ = 0.71073 Å, F(000) = 888; crystal size 0.16 × 0.12 × 0.10 mm³; 2471 independent reflections [R(int) = 0.0227], reflections collected 7122; refinement method: full-matrix least-squares on F²: goodness-of-fit on F² 1.137; final R indices [I > 2σ(I)], R1 = 0.0727, wR2 = 0.1597, largest diff. peak and hole 0.227 Åand
-0.151 e Å.

15

Crystal Structure Data for Compound S4 CCDC 815277, C24H24N2O2S, MW = 404.51; triclinic; space group: P1, a = 9.2569 (12), b = 10.8855 (14), c = 11.5162 (14) Å, α = 114.300(2)˚, β = 90.206 (2)˚, γ = 90.845 (2)˚, V = 1057.5 (2) ų, T = 298 (2) K, Z = 2, D C = 1.270 Mg/m³, µ = 0.175 mm, λ = 0.71073Å, F(000) = 428; crystal size 0.16 × 0.12 × 0.10 mm³; 4075 independent reflections [R(int) = 0.0215], reflections collected 6108; refinement method: full-matrix least-squares on F²: goodness-of-fit on F² 1.062; final R indices [I > 2σ(I)], R1 = 0.0581, wR2 = 0.1311, largest diff. peak and hole 0.185 Åand
-0.186 e Å.

16

Compounds S8 and L8 were obtained as a mixture, for more details, see Supporting Information.

17

Crystal Structure Data for Compound S5 CCDC, 8152756, C18H20N2O2, MW = 296.36; monoclinic; space group Cc, a = 17.6508 (17), b= 10.4452 (10), c = 18.9547 (18) Å, α = 90.00˚, β = 117.458 (2)˚, γ = 90.00˚, V = 3100.9 (5)ų, T = 298 (2) K, Z = 8, D C = 1.270 Mg/m³, µ = 0.084 mm, λ = 0.71073 Å, F(000) = 1264: crystal size 0.16 × 0.12 × 0.10 mm³; 4566 independent reflections [R(int) = 0.0467], reflections collected 9790, refinement method: full-matrix least-squares on F²: goodness-of-fit on F² 1.014; final R indices [I > 2σ(I)], R1 = 0.0704, wR2 = 0.1641, largest diff. peak and hole 0.389 Å and
-0.233 e Å.