Subscribe to RSS
DOI: 10.1055/s-0031-1289904
An Eficient One-Pot Synthesis of Macrocyclic Compounds Possessing Propargylamine Skeletons via Mannich Reaction
Publication History
Publication Date:
23 November 2011 (online)
Abstract
A new efficient method using the Mannich three-component reaction in one pot to synthesize [1+2+1]- and [2+4+2]-macrocyclic compounds possessing a propargylamine backbone was reported. Interestingly, 1,4-diazepane as a multiuse reagent played the part of a substrate to participate in the Mannich reaction and acted as a base to promote the Eglinton-Glaser dimerizations in the coordination processes simultaneously via a one-pot procedure. The target macrocycles were obtained in good yields.
Key words
multicomponent reaction - one pot - dimerizations - macrocycles - coordination processes
- Supporting Information for this article is available online:
- Supporting Information
- Primary data for this article are available online and can be cited using the following DOI: 10.4125/pd0023th:
- Primary Data
-
1a
Wessjohann LA.Rivera DG.Vercillo OE. Chem. Rev. 2009, 109: 796 -
1b
Wessjohann LA.Ruijter E.Rivera DG.Brandt W. Mol. Diversity 2005, 9: 171 -
1c
Wessjohann LA. Curr. Opin. Chem. Biol. 2000, 4: 303 -
1d
Breinbauer R.Vetter IR.Waldmann H. Angew. Chem. Int. Ed. 2002, 41: 2878 -
1e
Driggers EM.Hale SP.Lee J.Terrett NK. Nat. Rev. 2008, 7: 608 -
2a
Newman DJ.Cragg GM.Snader KM. J. Nat. Prod. 2007, 70: 461 -
2b
Wessjohann LA.Ruijter E. Top. Curr. Chem. 2005, 243: 137 -
2c
Shu Y.-Z. J. Nat. Prod. 1998, 61: 1053 -
2d
Lehn J.-M. Supramolecular Chemistry: Concepts and Perspectives Wiley-VCH; Weinheim: 1995. -
2e
Vögtle F. Supramolecular Chemistry Wiley and Sons; Chichester: 1991. - For reviews on multicomponent reactions, see:
-
3a
Bariwal JB.Ermolat’ev DS.Van der Eycken EV. Chem. Eur. J. 2010, 16: 3281 -
3b
Multicomponent
Reactions
Zhu JP.Bienaymé H. Wiley-VCH; Weinheim: 2005. -
3c
Ramón DJ.Yus M. Angew. Chem. Int. Ed. 2005, 44: 1602 -
3d
Simon C.Constantieux T.Rodriguez J. Eur. J. Org. Chem. 2004, 4957 -
3e
Ugi I.Dömling A.Werner B. J. Heterocycl. Chem. 2000, 37: 647 -
3f
Weber L.Illgen K.Almstetter M. Synlett 1999, 366 -
3g
Armstrong RW.Combs AP.Tempest PA.Brown SD.Keating TA. Acc. Chem. Res. 1996, 29: 123 - For selected examples of the Ugi-4CR, see:
-
4a
Wessjohann LA.Rivera DG.León F. Org. Lett. 2007, 9: 4733 -
4b
Michalik D.Schaks A.Wessjohann LA. Eur. J. Org. Chem. 2007, 149 -
4c
Westermann B.Michalik D.Schaks A.Kreye O.Wagner C.Merzweiler K.Wessjohann LA. Heterocycles 2007, 73: 863 -
4d
Rivera DG.Vercillo OE.Wessjohann LA. Synlett 2007, 308 -
4e
Wessjohann LA.Rivera DG.Coll F. J. Org. Chem. 2006, 71: 7521 -
4f
Kreye O.Westermann B.Rivera DG.Johnson DV.Orru RVA.Wessjohann LA. QSAR Comb. Sci. 2006, 25: 461 -
4g
Cristau P.Temal-Laïb T.Bois-Choussy M.Martin M.-T.Vors J.-P.Zhu J. Chem. Eur. J. 2005, 11: 2668 -
4h
Beck B.Picard A.Herdtweck E.Dömling A. Org. Lett. 2004, 6: 39 -
4i
Schreiber SL. Chem. Eng. News 2003, 81 (9): 51 -
4j
Janvier P.Bois-Choussy M.Bienaymé H.Zhu J. Angew. Chem. Int. Ed. 2003, 42: 811 -
4k
Temal-Laib T.Chastanet J.Zhu J. J. Am. Chem. Soc. 2002, 124: 583 - For selected examples of Passerini-3CR, see:
-
5a
León F.Rivera DG.Wessjohann LA. J. Org. Chem. 2008, 73: 1762 -
5b
Wessjohann LA.Kleber Z.Andrade C.Vercillo OE.Rivera DG. Targets Heterocycl. Syst. 2006, 10: 24 -
5c
Blankenstein J.Zhu J. Eur. J. Org. Chem. 2005, 1949 -
5d
Rowan SJ.Hamilton DG.Brandy PA.Sanders JKM. J. Am. Chem. Soc. 1997, 119: 2578 -
5e
Cort AD.Ercolani G.Iamiceli AL.Mandolini L.Mencarelli P. J. Am. Chem. Soc. 1994, 116: 7081 -
5f
Ercolani G.Mandolini L.Mencarelli P.Roelens S.
J. Am. Chem. Soc. 1993, 115: 3901 - For selected examples of the Staudinger-3CR, see:
-
6a
Sierra MA.Pellico D.Gómez-Gallego M.Manchego MJ.Torres R. J. Org. Chem. 2006, 71: 8787 -
6b
Arumugan N.Raghunathan R. Tetrahedron Lett. 2006, 47: 8855 -
6c
Palomo C.Aizpurua JM.Ganboa I.Oiarbide M. Eur. J. Org. Chem. 1999, 3223 - 7 For selected examples of the Petasis
reaction, see:
Petasis NA. In Multicomponent ReactionsZhu J.Bienyamé H. Wiley-VCH; Weinheim: 2005. p.119 - For selected examples of the Mannich reaction, see:
-
8a
Mani G.Jana D.Kumar R.Ghorai D. Org. Lett. 2010, 12: 3212 -
8b
Mani G.Guchhait T.Kumar R.Kumar S. Org. Lett. 2010, 12: 3910 -
8c
Beyeh NK.Valkonen A.Rissanen K. Org. Lett. 2010, 12: 1392 -
8d
Rivera A.Quevedo R. Tetrahedron Lett. 2004, 45: 8335 -
8e
Airola K.Böhmer V.Paulus EF.Rissanen K.Schmidt C.Thondorf I.Vogt W. Tetrahedron 1997, 53: 10709 -
8f
Iwanek W.Mattay J. Liebigs Ann. 1995, 1463 -
9a
Miura M.Enna M.Okuro K.Nomura M. J. Org. Chem. 1995, 60: 4999 -
9b
Jenmalm A.Berts W.Li YL.Luthman K.Csoregh I.Hacksell U. J. Org. Chem. 1994, 59: 1139 -
10a
Dyker G. Angew. Chem. Int. Ed. 1999, 38: 1698 -
10b
Naota T.Takaya H.Murahashi SI. Chem. Rev. 1998, 98: 2599 -
10c
Huffman MA.Yasuda N.DeCamp AE.Grabowski EJJ. J. Org. Chem. 1995, 60: 1590 -
10d
Konishi M.Ohkuma H.Tsuno T.Oki T.VanDuyne GD.Clardy J. J. Am. Chem. Soc. 1990, 112: 3715 -
11a
Zhang Y.Li P.Wang M.Wang L. J. Org. Chem. 2009, 74: 4364 -
11b
Li P.Zhang Y.Wang L. Chem. Eur. J. 2009, 15: 2045 -
11c
Kumar V.Chipeleme A.Chibale K. Eur. J. Org. Chem. 2008, 43 -
11d
Lo VK.-Y.Liu Y.Wong M.-K.Che C.-M. Org. Lett. 2006, 8: 1529 -
11e
Li P.Wang L. Chin. J. Chem. 2005, 23: 1076 -
11f
Shi L.Tu YQ.Wang M.Zhang FM.Fan CA. Org. Lett. 2004, 6: 1001 -
11g
Sakaguchi S.Mizuta T.Furuwan M.Kubo T.Ishii Y. Chem. Commun. 2004, 1638 -
11h
Bieber LW.Silva MF. Tetrahedron Lett. 2004, 45: 8281 -
11i
Jiang B.Si Y.-G. Tetrahedron Lett. 2003, 44: 6767 -
11j
Wei C.Li Z.Li C.-J. Org. Lett. 2003, 5: 4473 -
11k
Wei C.Li C.-J. J. Am. Chem. Soc. 2003, 125: 9584 -
11l
Huma HZS.Halder R.Kalra SS.Dasb J.Iqbala J. Tetrahedron Lett. 2002, 43: 6485 -
11m
Li C.-J.Wei C. Chem. Commun. 2002, 268 -
11n
Sharba AH. Ahbath Al-Yarmouk, Basic Sci. Eng. 2002, 11 (2A): 655 -
11o
Kabalka GW.Wang L.Pagni RM. Synlett 2001, 676 -
11p
Fischer C.Carreira EM. Org. Lett. 2001, 3: 4319 -
11q
Sakaguchi S.Kubo T.Ishii Y. Angew. Chem. Int. Ed. 2001, 40: 2534 -
18a
Crowley JD.Goldup SM.Gowans ND.Leigh DA.Ronaldson VE.Slawin AMZ. J. Am. Chem. Soc. 2010, 132: 6243 -
18b
Do H.-Q.Daugulis O. J. Am. Chem. Soc. 2009, 131: 17052 -
18c
Glaser C. Ber. Dtsch. Chem. Ges. 1869, 2: 422
References
Crystal Structure
Data for Compound L1
CCDC 815275, C18H20N2O2; MW = 296.36;
monoclinic; space group: P2 (1)/c, a = 10.715
(3), b = 5.4373
(13), c = 26.758
(6) Å, α = 90.00˚, β = 92.176
(4)˚, γ = 90.00˚; V = 1557.8
(6) ų; T = 150
(2) K; Z = 4; D
C = 1.264
Mg/m³; µ = 0.083
mm-¹; λ = 0.71073 Å; F(000) = 632; crystal size: 0.16 × 0.10 × 0.10
mm³; 3376 independent reflections [R(int) = 0.0940],
reflections collected 10246; refinement method: full-matrix least-squares
on F²: goodness-of-fit on F² 1.093;
final R indices [I > 2σ(I)], R1 = 0.0752, wR2 = 0.1847,
largest diff. peak and hole 0.390 Å-³and
-0.242
e Å-³.
Crystal Structure Data for Compound L2 CCDC 848122, C36H38Cl2N4O4; MW = 661.60; triclinic; space group: P1, a = 7.6628 (19), b = 10.062 (3), c = 11.528 (3) Å, α = 91.301 (4)˚, β = 93.047 (4)˚, γ = 112.314 (4)˚; V = 820.2 (4) ų, T = 298 (2) K, Z = 1, D C = 1.339 Mg/m³, µ = 0.244 mm-¹, λ = 0.71073 Å, F(000) = 348; crystal size: 0.16 × 0.12 × 0.10 mm³; 2844 independent reflections [R(int) = 0.0183], reflections collected 4852; refinement method: full-matrix least-squares on F²: goodness-of-fit on F² 1.069; final R indices [I > 2σ(I)], R1 = 0.0706, wR2 = 0.1746, largest diff. peak and hole 0.273 Å-³and -0.278 e Å-³.
14
Crystal Structure
Data for Compound S3
CCDC 832859, C27H30N2O2, MW = 414.53;
monoclinic; space group: C2/c, a = 13.946
(2) Å, b = 18.635
(3) Å, c = 9.1650
(14) Å, α = 90.00˚, β = 107.492
(2)˚, γ = 90.00˚, V = 2271.6
(6) ų, T = 298
(2) K, Z = 4, D
C = 1.212
Mg/m³, µ = 0.076
mm-¹, λ = 0.71073 Å, F(000) = 888; crystal size 0.16 × 0.12 × 0.10
mm³; 2471 independent reflections [R(int) = 0.0227],
reflections collected 7122; refinement method: full-matrix least-squares
on F²: goodness-of-fit on F² 1.137;
final R indices [I > 2σ(I)], R1 = 0.0727, wR2 = 0.1597,
largest diff. peak and hole 0.227 Å-³and
-0.151
e Å-³.
Crystal Structure
Data for Compound S4
CCDC 815277, C24H24N2O2S, MW = 404.51;
triclinic; space group: P1, a = 9.2569
(12), b = 10.8855
(14), c = 11.5162 (14) Å, α = 114.300(2)˚, β = 90.206
(2)˚, γ = 90.845
(2)˚, V = 1057.5
(2) ų, T = 298
(2) K, Z = 2, D
C = 1.270
Mg/m³, µ = 0.175
mm-¹, λ = 0.71073Å, F(000) = 428; crystal size 0.16 × 0.12 × 0.10
mm³; 4075 independent reflections [R(int) = 0.0215],
reflections collected 6108; refinement method: full-matrix least-squares
on F²: goodness-of-fit on F² 1.062;
final R indices [I > 2σ(I)], R1 = 0.0581, wR2 = 0.1311,
largest diff. peak and hole 0.185 Å-³and
-0.186
e Å-³.
Compounds S8 and L8 were obtained as a mixture, for more details, see Supporting Information.
17
Crystal Structure
Data for Compound S5
CCDC, 8152756, C18H20N2O2, MW = 296.36;
monoclinic; space group Cc, a = 17.6508
(17), b = 10.4452
(10), c = 18.9547
(18) Å, α = 90.00˚, β = 117.458
(2)˚, γ = 90.00˚, V = 3100.9
(5)ų, T = 298
(2) K, Z = 8, D
C = 1.270
Mg/m³, µ = 0.084
mm-¹, λ = 0.71073 Å, F(000) = 1264: crystal size 0.16 × 0.12 × 0.10
mm³; 4566 independent reflections [R(int) = 0.0467],
reflections collected 9790, refinement method: full-matrix least-squares
on F²: goodness-of-fit on F² 1.014;
final R indices [I > 2σ(I)], R1 = 0.0704, wR2 = 0.1641,
largest diff. peak and hole 0.389 Å-³ and
-0.233
e Å-³.