Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2012; 23(19): 2763-2767
DOI: 10.1055/s-0032-1316556
DOI: 10.1055/s-0032-1316556
cluster
Ruthenium-Catalyzed Direct ortho-Alkynylation of Arenes with Chelation Assistance
Further Information
Publication History
Received: 18 April 2012
Accepted after revision: 28 May 2012
Publication Date:
16 July 2012 (online)
Abstract
The ruthenium-catalyzed direct alkynylation of arenes with the chelation assistance of nitrogen-containing heterocycles including pyridine, pyrimidine, pyrazole, and imidazole are described. The alkynylation is successful even in the presence of an acidic N–H bond. Broad compatibility with functional groups is observed under catalytic conditions. The obtained alkynylated products could serve as precursors for polycyclic heteroarenes.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Kakiuchi F, Kochi T. Synthesis 2008; 3013
- 1b Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
- 1c Daugulis O, Do H.-Q, Shabashov D. Acc. Chem. Res. 2009; 42: 1074
- 1d Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
- 1e Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
- 1f Sun C.-L, Li B.-J, Shi Z.-J. Chem. Rev. 2010; 111: 1293
- 1g Hirano K, Miura M. Synlett 2011; 294
- 1h Ackermann L. Chem. Rev. 2011; 111: 1315
- 2 Dudnik AS, Gevorgyan V. Angew. Chem. Int. Ed. 2010; 49: 2096
- 3a Kalinin VK, Pashchenko DN, She FM. Mendeleev Commun. 1992; 2: 60
- 3b Seregin IV, Ryabova V, Gevorgyan V. J. Am. Chem. Soc. 2007; 129: 7742
- 3c Gu Y, Wang X.-m. Tetrahedron Lett. 2009; 50: 763
- 3d Rodriguez A, Fennessy RV, Moran WJ. Tetrahedron Lett. 2009; 50: 3942
- 3e Kim SH, Chang S. Org. Lett. 2010; 12: 1868
- 3f Yang L, Zhao L, Li C.-J. Chem. Commun. 2010; 46: 4184
- 3g Kim SH, Yoon J, Chang S. Org. Lett. 2011; 13: 1474
- 3h Mousseau JJ, Bull JA, Ladd CL, Fortier A, Sustac Roman D, Charette AB. J. Org. Chem. 2011; 76: 8243
- 3i Ackermann L, Kornhaass C, Zhu Y. Org. Lett. 2012; 14: 1824
- 4a Matsuyama N, Hirano K, Satoh T, Miura M. Org. Lett. 2009; 11: 4156
- 4b Matsuyama N, Kitahara M, Hirano K, Satoh T, Miura M. Org. Lett. 2010; 12: 2358
- 5a Besselièvre F, Piguel S. Angew. Chem. Int. Ed. 2009; 48: 9553
- 5b Kitahara M, Hirano K, Tsurugi H, Satoh T, Miura M. Chem.–Eur. J. 2010; 16: 1772
- 5c Kawano T, Matsuyama N, Hirano K, Satoh T, Miura M. J. Org. Chem. 2010; 75: 1764
- 5d Berciano BP, Lebrequier S, Besselièvre F, Piguel S. Org. Lett. 2010; 12: 4038
- 6a Brand JP, Charpentier J, Waser J. Angew. Chem. Int. Ed. 2009; 48: 9346
- 6b Brand JP, Waser J. Angew. Chem. Int. Ed. 2010; 49: 7304
- 6c Brand JP, Gonzalez DF, Nicolai S, Waser J. Chem. Commun. 2011; 47: 102
- 7a Kobayashi K, Arisawa M, Yamaguchi M. J. Am. Chem. Soc. 2002; 124: 8528
- 7b Amemiya R, Fujii A, Yamaguchi M. Tetrahedron Lett. 2004; 45: 4333
- 7c Trofimov BA, Stepanova ZV, Sobenina LN, Mikhaleva AI, Ushakov IA. Tetrahedron Lett. 2004; 45: 6513
- 7d Trofimov BA, Sobenina LN, Stepanova ZV, Vakul’skaya TI, Kazheva ON, Aleksandrov GG, Dyachenko OA, Mikhaleva AI. Tetrahedron 2008; 64: 5541
- 8a Tobisu M, Ano Y, Chatani N. Org. Lett. 2009; 11: 3250
- 8b Ano Y, Tobisu M, Chatani N. J. Am. Chem. Soc. 2011; 133: 12984
- 8c Ano Y, Tobisu M, Chatani N. Org. Lett. 2011; 14: 354
- 9a de Haro T, Nevado C. J. Am. Chem. Soc. 2010; 132: 1512
- 9b Wei Y, Zhao H, Kan J, Su W, Hong M. J. Am. Chem. Soc. 2010; 132: 2522 ; see also ref. 4b
- 10 Brand JP, Waser J. Org. Lett. 2012; 14: 744
- 11a Lewis LN, Smith JF. J. Am. Chem. Soc. 1986; 108: 2728
- 11b Murai S, Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N. Nature (London) 1993; 366: 529
- 12a Oi S, Fukita S, Hirata N, Watanuki N, Miyano S, Inoue Y. Org. Lett. 2001; 3: 2579
- 12b Oi S, Ogino Y, Fukita S, Inoue Y. Org. Lett. 2002; 4: 1783
- 12c Oi S, Aizawa E, Ogino Y, Inoue Y. J. Org. Chem. 2005; 70: 3113
- 12d Ackermann L. Org. Lett. 2005; 7: 3123
- 12e Oi S, Funayama R, Hattori T, Inoue Y. Tetrahedron 2008; 64: 6051
- 12f Ackermann L, Althammer A, Born R. Tetrahedron 2008; 64: 6115
- 12g Oezdemir I, Demir S, Cetinkaya B, Gourlaouen C, Maseras F, Bruneau C, Dixneuf PH. J. Am. Chem. Soc. 2008; 130: 1156
- 12h Oi S, Sato H, Sugawara S, Inoue Y. Org. Lett. 2008; 10: 1823
- 12i Arockiam PB, Fischmeister C, Bruneau C, Dixneuf PH. Angew. Chem. Int. Ed. 2010; 49: 6629
- 12j Miura H, Wada K, Hosokawa S, Inoue M. Chem.–Eur. J. 2010; 16: 4186
- 12k Yu B, Yan X, Wang S, Tang N, Xi C. Organometallics 2010; 29: 3222
- 12l Seki M, Nagahama M. J. Org. Chem. 2011; 76: 10198
- 12m Lakshman MK, Deb AC, Chamala RR, Pradhan P, Pratap R. Angew. Chem. Int. Ed. 2011; 50: 11400
- 12n Ferrer Flegeau E, Bruneau C, Dixneuf PH, Jutand A. J. Am. Chem. Soc. 2011; 133: 10161
- 12o Ackermann L, Diers E, Manvar A. Org. Lett. 2012; 14: 1154
- 12p Matsuura Y, Tamura M, Kochi T, Sato M, Chatani N, Kakiuchi F. J. Am. Chem. Soc. 2007; 129: 9858
- 12q Ackermann L, Lygin AV, Hofmann N. Angew. Chem. Int. Ed. 2011; 50: 6379
- 12r Ackermann L, Wang L, Lygin AV. Chem. Sci. 2012; 3: 177
- 12s Ackermann L, Wang L, Wolfram R, Lygin AV. Org. Lett. 2012; 14: 728
- 12t Kozhushkov SI, Yufit DS, Ackermann L. Org. Lett. 2008; 10: 3409
- 12u Ackermann L, Novak P. Org. Lett. 2009; 11: 4966
- 12v Ackermann L, Novak P, Vicente R, Hofmann N. Angew. Chem. Int. Ed. 2009; 48: 6045
- 12w Ackermann L, Hofmann N, Vicente R. Org. Lett. 2011; 13: 1875
- 12x Oi S, Tanaka Y, Inoue Y. Organometallics 2006; 25: 4773
- 12y Kochi T, Urano S, Seki H, Mizushima E, Sato M, Kakiuchi F. J. Am. Chem. Soc. 2009; 131: 2792
- 12z Saidi O, Marafie J, Ledger AE. W, Liu PM, Mahon MF, Kociok-Köhn G, Whittlesey MK, Frost CG. J. Am. Chem. Soc. 2011; 133: 19298
- 13 See Supporting Information for the details of the optimization studies on reaction conditions
- 14a Chatani N, Ie Y, Kakiuchi F, Murai S. J. Org. Chem. 1997; 62: 2604
- 14b Tobisu M, Ano Y, Chatani N. Chem.–Asian J. 2008; 3: 1585
- 15 Sonoda M, Kakiuchi F, Chatani N, Murai S. Bull. Chem. Soc. Jpn. 1997; 70: 3117
- 16 The alkynylation using phenylethynyl bromide, 1-bromo-1-hexyne, methyl 3-bromopropionate, and (triisopropylsilyl)-acetylene instead of 2 was unsuccessful
Selected reviews on catalytic C–H bond-functionalization reactions:
Catalytic alkynylation using metals other than shown above: Gallium:
For heterogeneous catalysis, see:
Selected examples of ruthenium-catalyzed C–H functionalization: For arylation, see:
For alkenylation, see:
For alkylation, see:
For other reactions, see: