Synlett 2012; 23(13): 1947-1949
DOI: 10.1055/s-0032-1316705
letter
© Georg Thieme Verlag Stuttgart · New York

Ti(Oi-Pr)4-Promoted Regio- and Stereoselective Aminolysis of 2,3-Epoxy Amides

Giuliana Righi*
a   CNR-Istituto di Chimica Biomolecolare- c/o Dip. Chimica, Sapienza Università di Roma, p.le A. Moro 5, 00185 Roma, Italy
,
Agnese Mantineo
b   Dip. Chimica, Sapienza Università di Roma, p.le A. Moro 5, 00185 Roma, Italy
,
Lorenza Suber
c   CNR-Istituto di Struttura della Materia, Via Salaria km 29, 300-00015 Monterotondo Scalo (Roma), Italy, Fax: +39(6)49913628   Email: giuliana.righi@cnr.it
,
Alessandra Mari*
b   Dip. Chimica, Sapienza Università di Roma, p.le A. Moro 5, 00185 Roma, Italy
› Author Affiliations
Further Information

Publication History

Received: 18 April 2012

Accepted after revision: 14 June 2012

Publication Date:
26 July 2012 (online)


Abstract

A mild and inexpensive Ti(Oi-Pr)4-mediated aminolysis of 2,3-epoxy amides has been developed. The reaction proceeds with excellent regioselectivity, regardless of the steric hindrance of the substituents on the heterocyclic ring, providing vicinal amino alcohols that are very suitable for synthetic applications.

 
  • References and Notes

    • 1a Padwa A, Murphree SS. ARKIVOC 2006; (iii): 6
    • 1b Bergmeier SC. Tetrahedron 2000; 56: 2561
    • 2a Connolly ME, Kersting F, Bollery CT. Prog. Cardio. Dis. 1976; 19: 203
    • 2b Bose DS, Narsaiah AV. Bioorg. Med. Chem. 2005; 3: 627
    • 2c Erhardt PW, Woo CW, Anderson WG, Gorczynski AR. J. Med. Chem. 1982; 25: 1408
    • 2d Zhu S, Meng L, Zhang Q, Wei L. Bioorg. Med. Chem. Lett. 2006; 16: 1854
    • 3a Schirok H. J. Org. Chem. 2006; 71: 5538
    • 3b Zhu S, Meng L, Zhang Q, Wei L. Bioorg. Med. Chem. Lett. 2006; 16: 1854
    • 3c Lindsay KB, Pyne SG. Tetrahedron 2004; 60: 4173
    • 3d Alikhani V, Beer D, Bentley D, Bruce I, Cuenoud BM, Fairhurst RA, Gedeck P, Haberthuer S, Hayden C, Janus D, Jordan L, Lewis C, Smithies K, Wissler E. Bioorg. Med. Chem. Lett. 2004; 14: 4705
    • 3e Ruediger E, Martel A, Meanwell N, Solomon C, Turmel B. Tetrahedron Lett. 2004; 45: 739
    • 3f Erdeen I. Comprehensive Heterocyclic Chemistry II . Vol. IA. Katritzky AR, Rees CW, Scriven EF. V. Pergamon; Oxford: 1996: 97
  • 4 Ager DJ, Prakash I, Schaad SR. Chem. Rev. 1996; 96: 835
  • 5 Sello G, Orsini F, Bernasconi S, Di Gennaro P. Tetrahedron: Asymmetry 2006; 17: 372 ; and references cited therein
    • 6a Narsaiah AV, Wadavrao SB, Reddy AR, Yadav JS. Synthesis 2011; 485
    • 6b William DB, Cullen A. J. Org. Chem 2009; 74: 9509
    • 6c Chakraborti AK, Kondaskar A, Rudrawar S. Tetrahedron 2004; 60: 9085
    • 6d Kamble VT, Joshi NS. Green Chem. Lett. Rev. 2010; 3: 275
    • 6e Chimni SS, Bala N, Dixit VA, Bharatam V. Tetrahedron 2010; 66: 3042
    • 6f Duran PachonL, Gamez P, van Brussel JJ. M, Reedijk J. Tetrahedron Lett. 2003; 44: 6025
    • 6g Lindstrom UM, Olofsson B, Somfai P. Tetrahedron Lett. 1999; 40: 9273
    • 6h Chini M, Crotti P, Favero L, Macchia F, Pineschi M. Tetrahedron Lett. 1994; 35: 433
    • 7a Sarabia F, Sánchez-Ruiz A. J. Org. Chem. 2005; 70: 9514
    • 7b Pino-González MS, Assiego C. Tetrahedron: Asymmetry 2005; 16: 199
    • 7c Nikolai AK, Hesse M. Helv. Chim. Acta 2003; 86: 2028
    • 7d Prabhakaran EN, Nageswara Rao I, Boruah A, Iqbal J. J. Org. Chem. 2002; 67: 8247
    • 7e Valpuesta M, Durante P, Upez-Herrera FJ. Tetrahedron Lett. 1995; 36: 4681
  • 8 Azzena F, Calvani F, Crotti P, Gardelli C, Macchia F, Pineschi M. Tetrahedron 1995; 51: 10601
  • 9 Chong JM, Sharpless KB. J. Org. Chem. 1985; 50: 1560
    • 10a Righi G, Bonini C In Targets in Heterocyclic Systems . Attanasi O, Spinelli D. Società Chimica Italiana; Roma: 2000
    • 10b Righi G, Ciambrone S. Tetrahedron Lett. 2004; 45: 2103
    • 10c Righi G, Pietrantonio S, Bonini C. Tetrahedron 2001; 57: 10039
  • 11 The N-allyl group was chosen because of our specific interest in the preparation of optically active functionalized nanoparticles.
  • 12 Caron M, Sharpless KB. J. Org. Chem. 1985; 50: 1557
  • 13 HPLC analysis was performed with a VYDAC reverse-phase C18 column (25 cm by 4.6 mm); MeCN–H2O containing 0.1% TFA, 25:75 to 35:65; flow rate: 1.0 mL; UV detection: 254 nm
  • 14 General procedure: A mixture of 2,3-epoxy amide (1 mmol), amine (excess, 1 mL), and Ti(Oi-Pr)4 (1.5 mmol) was stirred at the required temperature for 12 h. After this time, EtOAc was added and the organic phase was washed with aqueous tartaric acid solution (0.5 M), dried over Na2SO4, and concentrated in vacuo. The crude product was purified by silica gel column chromatography (CH2Cl2–MeOH, 95:5, 0.2% NH4OH). Compound 3: 1H NMR (300 MHz, CDCl3): δ = 0.80–0.95 (m, 9 H), 1.15–1.65 (m, 12 H), 2.21–2.67 (m, 4 H), 2.74–2.85 (m, 1 H), 3.76–3.85 (m, 2 H), 3.89 (d, J = 7.1 Hz, 1 H), 4.59 (br s, 1 H), 5.04–5.20 (m, 2 H), 5.69–5.85 (m, 1 H), 7.80 (br s, 1 H). 13C NMR (75.4 MHz, CDCl3): δ = 13.9, 20.5, 21.2, 27.5, 31.4, 41.5, 51.1, 63.6, 68.8, 116.5, 133.9, 173.4. Compound 8: 1H NMR (300 MHz, CDCl3): δ = 0.83 (t, J = 6.6 Hz, 3 H), 1.11–1.81 (m, 10 H), 2.34–2.51 (m, 2 H), 2.54–2.76 (m, 3 H), 3.76–3.84 (m, 2 H), 3.88 (d, J = 7.1 Hz, 1 H), 4.30 (br s, 1 H), 5.01–5.22 (m, 2 H), 5.67–5.86 (m, 1 H), 8.10 (br s, 1 H). 13C NMR (75.4 MHz, CDCl3): δ = 14.1, 21.2, 24.3, 26.5, 27.8, 41.3, 50.5, 67.4, 68.6, 116.1, 133.9, 173.48. Compound 9: 1H NMR (300 MHz, CDCl3): δ = 0.85 (t, J = 7.1 Hz, 3 H), 1.31–1.81 (m, 4 H), 2.53–2.63 (m, 2 H), 2.64–2.76 (m, 3 H), 3.57–3.76 (m, 5 H), 3.86–3.91 (m, 2 H), 4.11 (d, J = 7.15 Hz, 1 H), 5.10–5.23 (m, 2 H), 5.74–5.91 (m, 1 H), 7.65 (br s, 1 H). 13C NMR (75.4 MHz, CDCl3): δ = 14.2, 20.9, 27.8, 41.5, 50.0, 66.8, 67.4, 69.1, 116.5, 133.8, 173.4. Compound 10: 1H NMR (300 MHz, CDCl3): δ = 0.85–0.97 (m, 6 H), 1.21–1.65 (m, 12 H), 2.21–2.67 (m, 3 H), 2.91–3.05 (m, 1 H), 3.78–3.85 (m, 2 H), 4.01 (d, J = 7.2 Hz, 1 H), 4.21 (br s, 1 H), 5.04–5.20 (m, 2 H), 5.69–5.85 (m, 1 H), 7.69 (br s, 1 H). 13C NMR (75.4 MHz, CDCl3): δ = 13.9, 17.9, 20.3, 21.2, 23.1, 27.5, 31.0, 41.2, 53.1, 56.8, 69.8, 116.3, 133.9, 172.4. Compound 11: 1H NMR (300 MHz, CDCl3): δ = 0.74–2.02 (m, 17 H), 2.41–2.56 (m, 1 H), 3.06–3.22 (m, 2 H), 3.79–3.98 (m, 2 H), 4.01–4.07 (m, 1 H), 5.06–5.24 (m, 2 H), 5.73–5.87 (m, 1 H), 7.21 (br s, 1 H). 13C NMR (75.4 MHz, CDCl3): δ = 13.9, 19.1, 24.9, 25.0, 31.0, 33.5, 34.3, 41.0, 53.9, 56.4, 71.3, 116.1, 133.9, 172.1. Compound 12: 1H NMR (300 MHz, CDCl3): δ = 0.87 (t, J = 7.1 Hz, 3 H), 1.24–1.57 (m, 4 H), 3.72–3.99 (m, 4 H), 4.28 (d, J = 1.6 Hz, 1 H), 5.04–5.27 (m, 2 H), 5.66–5.88 (m, 1 H), 6.57–6.78 (m, 3 H), 6.93–7.07 (br s, 1 H), 7.07–7.21 (m, 3 H). 13C NMR (75.4 MHz, CDCl3): δ = 14.2, 19.7, 31.6, 33.9, 41.3, 41.6, 55.5, 72.3, 113.8, 116.8, 117.5, 129.6, 133.9, 147.3, 172.7. Compound 13: 1H NMR (300 MHz, CDCl3): δ = 0.85–0.95 (m, 9 H), 1.21–1.65 (m, 12 H), 2.20–2.65 (m, 4 H), 2.79 (d, J = 2.1 Hz, 3 H), 2.81–2.95 (m, 2 H), 3.91 (d, J = 7.2 Hz, 1 H), 6.09 (br s, 1 H). 13C NMR (75.4 MHz, CDCl3): δ = 13.9, 20.4, 21.1, 25.7, 27.4, 31.4, 41.5, 63.6, 68.8, 173.4. Compound 14: 1H NMR (300 MHz, CDCl3): δ = 0.82–0.95 (m, 9 H), 1.15–1.67 (m, 12 H), 2.23–2.65 (m, 4 H), 2.73–2.83 (m, 1 H), 3.91 (d, J = 7.1 Hz, 1 H), 4.39 (d, J = 14.5 Hz, 1 H), 4.42 (d, J = 14.5 Hz, 1 H), 4.62 (br s, 1 H), 6.39 (br s, 1 H), 7.05–7.37 (m, 5 H). 13C NMR (75.4 MHz, CDCl3): δ = 13.9, 20.5, 21.2, 27.5, 31.4, 41.5, 55.4, 63.6, 68.8, 139.7, 128.5, 128.1, 126.8, 168.2. Compound 20: 1H NMR (300 MHz, CDCl3): δ = 0.84–1.97 (m, 13 H), 3.10–3.24 (m, 1 H), 3.76–4.12 (m, 4 H), 4.65 (d, J = 5.6 Hz, 1 H), 5.05–5.33 (m, 2 H), 5.76–5.94 (m, 1 H), 6.76 (br s, 1 H), 7.08–7.68 (m, 5 H). 13C NMR (75.4 MHz, CDCl3): δ = 26.0, 26.2, 28.4, 29.5, 30.2, 41.3, 47.1, 51.4, 63.9, 70.2, 116.3, 126.8, 128.1, 128.4, 130.6, 134.3, 175.0