Synlett 2012; 23(15): 2209-2214
DOI: 10.1055/s-0032-1317014
letter
© Georg Thieme Verlag Stuttgart · New York

A Greener Protocol for Accessing 2,3-Dihydro/spiroquinazolin-4(1H)-ones: Natural Acid-SDS Catalyzed Three-Component Reaction

Rashmi Sharma
Division of Medicinal and Process Chemistry, CSIR Central Drug Research Institute, Lucknow 226001, India, Fax: +91(522)2623405   Email: prem_chauhan_2000@yahoo.com   Email: premsc58@hotmail.com
,
Anand Kumar Pandey
Division of Medicinal and Process Chemistry, CSIR Central Drug Research Institute, Lucknow 226001, India, Fax: +91(522)2623405   Email: prem_chauhan_2000@yahoo.com   Email: premsc58@hotmail.com
,
Prem M. S. Chauhan*
Division of Medicinal and Process Chemistry, CSIR Central Drug Research Institute, Lucknow 226001, India, Fax: +91(522)2623405   Email: prem_chauhan_2000@yahoo.com   Email: premsc58@hotmail.com
› Author Affiliations
Further Information

Publication History

Received: 13 April 2012

Accepted after revision: 09 July 2012

Publication Date:
14 August 2012 (online)


Abstract

A novel green and energy-efficient synthesis of 2,3-dihydro/spiroquinazolin-4(1H)-ones via three-component cyclo­condensation reaction involving isatoic anhydride, amines and aldehydes/ketones utilizing recyclable tartaric acid–SDS catalyst system has been achieved. With simple requirements of mechanical stirring or mechanochemical activation at room temperature and one of the shortest reported times as of yet, it is a significant improvement on previously described methods for the synthesis of such compounds. Moreover the catalyst system can also be efficiently applied in large-scale reactions which indicates the potential for applications in industry.

 
  • References

    • 1a Baird C. Environmental Chemistry. W. H. Freeman and Company; New York: 1999
    • 1b Anastas P, Heine LG, Williamson TC. Green Chemical Syntheses and Processes . Oxford University Press; New York: 2000
    • 1c Matlack AS. Introduction to Green Chemistry . Marcel Dekker; New York: 2001
    • 1d Lancaster M. Green Chemistry: An Introductory Text . Royal Society of Chemistry; Cambridge: 2002
    • 2a Anastas PT, Warner JC. Green Chemistry: Theory and Practice . Oxford University Press; Oxford: 1998
    • 2b Bruckmann A, Krebs A, Bolm C. Green Chem. 2008; 10: 1131
    • 2c Horvath IT. Green Chem. 2008; 10: 1024
    • 2d Handbook of Green Chemistry. Crabtree RH, Anastas PT. Wiley-VCH; Weinheim: 2009
    • 3a Liverton NJ, Armstrong DJ, Claremon DA, Remy DC, Baldwin JJ, Lynch RJ, Zhang G, Gould RJ. Bioorg. Med. Chem. Lett. 1998; 8: 483
    • 3b Zhang W, Mayer JP, Hall SE, Weigel JA. J. Comb. Chem. 2001; 3: 255
  • 4 Abdel-Jalil RJ, Voelter W, Saeed M. Tetrahedron Lett. 2004; 45: 3475
    • 5a Maia RC, Silva LL, Mazzeu EF, Fumian MM, de Rezende CM, Doriguetto AC, Correa RS, Miranda AL. P, Barreiro EJ, Fraga CA. M. Bioorg. Med. Chem. 2009; 17: 6517
    • 5b Jalali-Heravi M, Asadollahi-Baboli M. Eur. J. Med. Chem. 2009; 44: 1463
    • 5c Maskey RP, Shaaban M, Grun-Wollny I, Laatsch H. J. Nat. Prod. 2004; 67: 1131
    • 6a Gao L, Ji H, Rong L, Tang D, Zha Y, Shi Y, Tu S. J. Heterocycl. Chem. 2011; 48: 957
    • 6b Niknam K, Jafarpour N, Niknam E. Chin. Chem. Lett. 2011; 22: 69
    • 6c Ghorbani-Choghamarani A, Taghipour T. Lett. Org. Chem. 2011; 8: 470
    • 6d Zeng LY, Cai C. J. Heterocycl. Chem. 2010; 47: 1035
    • 6e Zhang ZH, Lu HY, Yang SH, Gao JW. J. Comb. Chem. 2010; 12: 643
    • 6f Rostamizadeh S, Amani AM, Mahdavinia GH, Sepehrian H, Ebrahimi S. Synthesis 2010; 1356
    • 6g Shaterian HR, Oveisi AR, Honarmand M. Synth. Commun. 2010; 40: 1231
    • 6h Dabiri M, Salehi P, Baghbanzadeh M, Zolfigol MA, Agheb M, Heydari S. Catal. Commun. 2008; 9: 785
    • 6i Chen J, Wu D, He F, Liu M, Wu H, Ding J, Su W. Tetrahedron Lett. 2008; 49: 3814
    • 6j Chen J, Su W, Wu H, Liu M, Jin C. Green Chem. 2007; 9: 972
    • 6k Baghbanzadeh M, Salehi P, Dabiri M, Kozehgary G. Synthesis 2006; 344
    • 6l Yoo CL, Fettinger JC, Kurth MJ. J. Org. Chem. 2005; 70: 6941
    • 6m Dabiri M, Salehi P, Otokesh S, Baghbanzadeh M, Kozehgarya G, Mohammadi AA. Tetrahedron Lett. 2005; 46: 6123
    • 6n Shi DQ, Rong LC, Wang JX, Zhuang QY, Wang XS, Hu HW. Tetrahedron Lett. 2003; 44: 3199
    • 6o Khurana JM, Kukreja G. J. Heterocycl. Chem. 2003; 40: 677
    • 6p Su WK, Yang BB. Aust. J. Chem. 2002; 55: 695
    • 7a Beyer MK, Clausen-Schaumann H. Chem. Rev. 2005; 105: 2921
    • 7b Choudhary G, Peddinti RK. Green Chem. 2011; 13: 276
    • 7c Aakeroy CB, Chopade PD. Org. Lett. 2011; 13: 1
    • 7d van den Ancker TR, Cave GW. V, Raston CL. Green Chem. 2006; 8: 50
    • 7e Trask AV, Motherwell WD. S, Jones W. Chem. Commun. 2004; 890
    • 7f Cave GW. V, Raston CL. Chem. Commun. 2000; 2199
    • 8a Rosati F, Oelerich J, Roelfes G. Chem. Commun. 2010; 46: 7804
    • 8b Scott JL, Raston CL. Green Chem. 2000; 2: 245
    • 8c Molteni G, Ponti A, Orlandi M. New J. Chem. 2002; 26: 1340
    • 8d Chiba K, Jinno M, Nozaki A, Tada M. Chem. Commun. 1997; 1403
    • 8e Kobayashi S, Busujima T, Nagayama S. Chem. Commun. 1998; 19
    • 9a Miyake H, Nakaob Y, Sasaki M. Tetrahedron Lett. 2006; 47: 6247
    • 9b Zhou B, Yang J, Li M, Gu Y. Green Chem. 2011; 13: 2204
  • 10 Representative Procedure: Method A: In a round-bottom flask, isatoic anhydride (0.1 g, 0.61 mmol) and amine (0.61 mmol) were dissolved in micellar solution of H2O–EtOH (3:1; 4 mL) sensitized with SDS (20 mol%). Tartaric acid (0.92 g, 0.61 mmol) and aldehyde/ketone (0.61 mmol) were then successively added and the reaction was allowed to stir at r.t. for an appropriate time indicated in Tables 2–4. The solid precipitate was filtered, washed with H2O, dried and could be used without further purification, however in case of 4r, 4s and 4t recrystallization with EtOH–ice was required. Method B: isatoic anhydride (0.1 g, 0.61 mmol) and amine (0.61 mmol) were mixed with a few drops of the solvent system (H2O–EtOH, 3:1) in a mortar. Tartaric acid (0.92 g, 0.61 mmol), SDS (20 mol%) and aldehyde/ketone (0.61 mmol) were then successively added and ground together with a pestle until completion of the reaction (Tables 2–4). In most of the cases the product was washed with H2O, however in case of 4rt recrystallization with EtOH–ice was required. 3-Butyl-2-phenyl-2,3-dihydroquinazolin-4(1H)-one (4a): colorless solid; yield: 0.15 g (87%); mp 132–135 °C. 1H (300 MHz, CDCl3): δ = 7.88 (d, 1 H, J = 6.9 Hz), 7.21 (br s, 4 H), 7.13–7.19 (m, 2 H), 6.76 (t, 1 H, J = 7.3 Hz), 6.44 (d, 1 H, J = 8.0 Hz), 5.76 (s, 1 H), 3.85–3.94 (m, 1 H), 2.64–2.74 (m, 1 H), 1.45–1.49 (m, 2 H), 1.20–1.27 (m, 2 H), 0.80 (t, 3 H, J = 7.3 Hz).13C (50 MHz, CDCl3): δ = 163.2, 145.2, 140.0, 133.4, 129.2, 128.9, 128.4, 126.5, 119.1, 116.2, 114.4, 72.1, 44.6, 29.8, 20.2, 13.8. IR (KBr): 3360, 1634 cm–1. MS (ES+): m/z = 281.1 [M+ + 1]. HRMS (DART): m/z calcd for [C18H20N2O + H+]: 281.1654; found: 281.1647. 3-Butyl-2-ferrocenyl-2,3-dihydroquinazolin-4(1H)-one (4q): yellow solid; yield: 0.17 g (72%); mp 137–140 °C. 1H NMR (300 MHz, CDCl3): δ = 7.83 (d, 1 H, J = 7.4 Hz), 7.19–7.27 (m, 1 H), 6.79 (t, 1 H, J = 7.4 Hz), 6.64 (d, 1 H, J = 6.9 Hz), 5.40 (s, 1 H), 4.08–4.21 (m, 10 H), 3.75–3.79 (m, 1 H), 2.88–2.92 (m, 1 H), 1.42–1.50 (m, 2 H), 1.19–1.28 (m, 2 H), 0.82 (t, 3 H, J = 7.5 Hz). 13C NMR (50 MHz, CDCl3): δ = 162.7, 146.4, 133.3, 128.7, 119.3, 116.5, 113.9, 88.6, 73.3, 69.1, 68.81, 68.76, 68.6, 68.2, 66.3, 44.0, 30.1, 20.3, 14.0. IR (KBr): 3285, 1631 cm–1. MS (ES+) m/z = 389.0 [M+ + 1]. HRMS (DART): m/z calcd for [C22H24FeN2O + H+]: 389.1316; found: 389.1318. 2,3-Diphenyl-2,3-dihydroquinazolin-4(1H)-one (4t): colorless solid; yield: 0.14 g (74%); mp 212–214 ºC. 1H NMR (300 MHz, CDCl3): δ = 8.04 (d, 1 H, J = 7.8 Hz), 7.19–7.38 (m, 11 H), 6.92 (t, 1 H, J = 7.5 Hz), 6.65 (d, 1 H, J = 7.8 Hz), 6.11 (s, 1 H). 13C NMR (75 MHz, CDCl3 + CD3OD): δ = 165.6, 147.8, 142.1, 141.6, 135.8, 130.6, 130.5, 130.2, 128.7, 128.4, 120.5, 117.5, 116.5, 76.2. IR (KBr): 3327, 1649 cm–1. MS (ES+): m/z = 301.1 [M+ + 1]. HRMS (DART): m/z calcd for [C20H16N2O + H+]: 301.1335; found: 301.1333. 2-Phenyl-2,3-dihydroquinazolin-4(1H)-one (4u): colorless solid; yield: 0.12 g (89%); mp 218–220 ºC. 1H NMR (200 MHz, CDCl3): δ = 7.96 (d, 1 H, J = 8.1 Hz), 7.26–7.58 (m, 6 H), 6.94 (t, 1 H, J = 7.2 Hz), 6.69 (d, 1 H, J = 8.0 Hz), 5.90 (s, 1 H), 5.82 (s, 1 H, NH), 4.41 (s, 1 H, NH). 13C NMR (75 MHz, CDCl3): δ = 169.5, 152.9, 145.8, 138.4, 133.8, 133.3, 132.6, 132.0, 122.6, 119.8, 119.5, 72.5. IR (KBr): 3296, 3190, 1656 cm–1. MS (ES+): m/z = 225.0 [M+ + 1]. HRMS (DART): m/z calcd for [C14H12N2O + H+]: 225.1022; found: 225.1017. 1′H-Spiro[cyclohexane-1,2′-quinazolin]-4′(3′H)-one (4v): colorless solid; yield: 0.09 g (71%); mp 217–219 °C.1H NMR (200 MHz, CDCl3): δ = 7.89 (dd, 1 H, J 1 = 7.8 Hz, J 2 = 1.2 Hz), 7.28–7.33 (m, 1 H), 6.84 (t, 1 H, J = 7.5 Hz), 6.67 (d, 1 H, J = 7.8 Hz), 6.43 (s, 1 H, NH), 4.40 (s, 1 H, NH), 1.84 (br s, 4 H), 1.47–1.68 (m, 6 H). 13C NMR (75 MHz, CDCl3 + CD3OD): δ = 167.0, 148.0, 136.2, 130.3, 120.7, 117.0, 70.5, 39.7, 26.8, 24.0. IR (KBr): 3362, 3179, 1647 cm–1. MS (ES+): m/z = 217.0 [M+ + 1]. HRMS (DART): m/z calcd for [C13H16N2O + H+]: 217.1335; found: 217.1326. 1-Ethyl-1′H-spiro[indoline-3,2′-quinazoline]-2,4′(3′H)-dione (4x): tan solid; yield: 0.15 g (85%); mp 227–230 °C. 1H NMR (300 MHz, DMSO-d 6): δ = 8.29 (s, 1 H, NH), 7.62 (d, 1 H, J = 7.1 Hz), 7.52 (d, 1 H, J = 7.2 Hz), 7.42 (t, 1 H, J = 7.6 Hz), 7.18–7.25 (m, 2 H), 7.00–7.16 (m, 2 H), 6.69 (t, 1 H, J = 7.3 Hz), 6.61 (d, 1 H, J = 4.0 Hz), 3.57–3.68 (m, 2 H), 1.16 (t, 3 H, J = 6.9 Hz). 13C NMR (75 MHz, DMSO-d 6): δ = 173.8, 163.9, 146.7, 142.6, 133.3, 130.9, 129.0, 126.8, 125.1, 122.7, 117.2, 114.2, 113.9, 109.0, 70.7, 34.0, 12.3. IR (KBr): 3368, 3227, 1638, 1613 cm–1. MS (ES+): m/z = 294.0 [M+ + 1]. HRMS (DART): m/z calcd for [C17H15N3O2 + H+]: 294.1164; found: 294.1156
  • 11 Bellot F, Cosledan F, Vendier L, Brocard J, Meunier B, Robert A. J. Med. Chem. 2010; 53: 4103
    • 12a Subba Reddy BV, Venkateswarlu A, Madan C, Vinu A. Tetrahedron Lett. 2011; 52: 1891
    • 12b Miklós F, Fülöp F. Eur. J. Org. Chem. 2010; 959
    • 12c Wang X, Yang K, Zhou J, Tu S. J. Comb. Chem. 2010; 12: 417
    • 12d Shi D, Rong L, Wang J, Zhuang Q, Wangb X, Hu H. Tetrahedron Lett. 2003; 44: 3199
  • 13 The corresponding starting materials for this reaction are broadly commercially available, mostly in numbers exceeding 1000 (RNH2, RCHO, RCOR). However, less than 1000 substituted isatoic anhydrides are available
  • 14 Tietze LF. Chem. Rev. 1996; 96: 115
  • 15 For large-scale reaction, reaction with 20 g of isatoic anhydride successfully afforded 4a with 84% yield (29.5 g) via method A