RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2013; 24(1): 33-36
DOI: 10.1055/s-0032-1317690
DOI: 10.1055/s-0032-1317690
letter
A Novel Approach to the Synthesis of α-Aminonitriles Using Triphenyl- phosphine Dibromide under Solvent-Free Conditions
Weitere Informationen
Publikationsverlauf
Received: 06. August 2012
Accepted after revision: 02. November 2012
Publikationsdatum:
04. Dezember 2012 (online)
Abstract
A quick and highly efficient, one-pot, three-component, solvent-free method for the synthesis of α-aminonitriles starting from the corresponding carbonyl compounds, amines, and trimethylisocyanide using triphenylphosphine dibromide, has been developed. Diverse α-aminonitriles have been synthesized in good to excellent yields (80–99%) using a range of aldehydes, ketones and amines.
-
References and Notes
- 1a Undavia NK, Patwa BS, Navadiya HD, Jivani AR, Dave PN. Int. J. Chem. Sci. 2009; 7: 1019
- 1b Mantri M, de Graaf O, van Veldhoven J, Goeblyoes A, von Frijtag Drabbe Künzel JK, Mulder-Krieger T, Link R, de Vries H, Beukers MW, Brussee J, Ijzerman AP. J. Med. Chem. 2008; 51: 4449
- 1c Loeser R, Schilling K, Dimmig E, Guetschow M. J. Med. Chem. 2005; 48: 7688
- 1d Ward YD, Thomson DS, Frye LL, Cywin CL, Morwick T, Emmanuel MJ, Zindell R, McNeil D, Bekkali Y, Giradot M, Hrapchak M, DeTuri M, Crane K, White D, Pav S, Wang Y, Hao M.-H, Grygon CA, Labadia ME, Freeman DM, Davidson W, Hopkins JL, Brown ML, Spero DM. J. Med. Chem. 2002; 45: 5471
- 2a N’ajera C, Sansano JM. Chem. Rev. 2007; 107: 4584
- 2b Zuend SJ, Coughlin MP, Lalonde MP, Jacobsen EN. Nature 2009; 461: 968
- 3a Groger H. Chem. Rev. 2003; 103: 2795
- 3b Shafran YM, Bakulev VA, Mokrushin VS. Russ. Chem. Rev. 1989; 58: 148
- 3c Michaux J, Niel G, Campagne J.-M. Chem. Soc. Rev. 2009; 38: 2093
- 4a Matier WL, Owens DA, Comer WT, Deitchman D, Ferguson H, Seidehamel RJ, Young JR. J. Med. Chem. 1973; 16: 901
- 4b Ohfune Y, Shinada T. Eur. J. Org. Chem. 2005; 5127
- 4c Friestad GK, Mathies AK. Tetrahedron 2007; 63: 2541
- 4d Connon SJ. Angew. Chem. Int. Ed. 2008; 47: 1176
- 5a Enders D, Shilvock JP. Chem. Soc. Rev. 2000; 29: 359
- 5b Gembus V, Janvier S, Lecouve J.-P, Gloanec P, Marsais F, Levacher V. Eur. J. Org. Chem. 2010; 3583
- 5c Yin B, Zhang Y, Xu L.-W. Synthesis 2010; 3583
- 6a Strecker A. Justus Liebigs Ann. Chem. 1850; 75: 27
- 6b Merino P, Marques-Lopez E, Tejero T, Herrera RP. Tetrahedron 2009; 65: 1219
- 6c Pastori N, Gambarotti C, Punta C. Mini-Rev. Med. Chem. 2009; 6: 184
- 6d Shibasaki M, Kanai M, Mita T. Org. React. 2008; 70: 1
- 6e Wang J, Liu X, Feng X. Chem. Rev. 2011; 111: 6947
- 7a Kobayashi S, Ishitani H. Chem. Rev. 1999; 99: 1069
- 7b Bhanu Prasad BA, Bisai A, Singh VK. Tetrahedron Lett. 2004; 45: 9565
- 7c Harusawa S, Hamada Y, Shioiri T. Tetrahedron Lett. 1979; 4663
- 7d Nakamura S, Sato N, Sugimoto M, Toru T. Tetrahedron: Asymmetry 2004; 15: 1513
- 7e Kantam ML, Mahendar K, Sreedhar B, Choudary BM. Tetrahedron 2008; 64: 3351
- 7f Li Z, Ma Y, Xu J, Shi J, Cai H. Tetrahedron Lett. 2010; 51: 3922
- 7g Cruz-Acosta F, Santos-exposito A, Armas P, Garcia-Tellado F. Chem. Commun. 2009; 6839
- 7h Sipos S, Jablonkai I. Tetrahedron Lett. 2009; 50: 1844
- 7i Abell JP, Yamamoto H. J. Am. Chem. Soc. 2009; 131: 15118
- 7j Enders D, Shilvock JP. Chem. Soc. Rev. 2000; 29: 359
- 8a De SK. J. Mol. Catal. A: Chem. 2005; 225: 169
- 8b North M. Angew. Chem. Int. Ed. 2004; 43: 4126
- 8c Murahashi SI, Komia N, Terai H, Nakae T. J. Am. Chem. Soc. 2003; 125: 15312
- 8d Ranu BC, Dey SS, Hajra A. Tetrahedron 2002; 58: 2529
- 8e Shen ZL, Ji SJ, Loh TP. Tetrahedron 2008; 64: 8159
- 8f Narasimhulu M, Reddy TS, Mahesh KC, Reddy SM, Reddy AV, Venkateshwarlu Y. J. Mol. Catal. A: Chem. 2007; 264: 288
- 8g De SK, Gibbs RA. Tetrahedron Lett. 2004; 45: 7407
- 8h Royer L, De SK, Gibbs RA. Tetrahedron Lett. 2005; 46: 4595
- 8i Karmakar B, Banerji J. Tetrahedron Lett. 2010; 51: 2748
- 8j Mojtahedi MM, Abaee S, Alishiri T. Tetrahedron Lett. 2009; 50: 2322
- 8k Paraskar S, Sudalai A. Tetrahedron Lett. 2006; 47: 5759
- 8l Kobayashi S, Busujima T, Nagayama S. Chem. Commun. 1998; 981
- 8m Martinez R, Ramon DJ, Yus M. Tetrahedron Lett. 2005; 46: 8471
- 8n Zhang GW, Zheng DH, Nie J, Wang T, Ma JA. Org. Biomol. Chem. 2010; 8: 1399
- 8o Ramesh S, Shivakumar K, Panja C, Arunanchalam PN, Lalitha A. Synth. Commun. 2010; 40: 3544
- 8p Paraskar AS, Sudalai A. Tetrahedron Lett. 2006; 47: 5759
- 8q Li Z, Ma Y, Xu J, Shi J, Cai H. Tetrahedron Lett. 2010; 51: 3922
- 8r Wang J, Masui Y, Onaka M. Eur. J. Org. Chem. 2010; 1763
- 9a Hajipour AR, Ghayeb Y, Sheikhan N. J. Iran. Chem. Soc. 2010; 7: 447
- 9b Khan NH, Agrawal S, Kureshy RI, Abdi SH. R, Singh S, Suresh E, Jasra RV. Tetrahedron Lett. 2008; 49: 640
- 9c Rafiee E, Rashidzadeh S, Joshaghani M, Chalabeh H, Afza K. Synth. Commun. 2008; 38: 2741
- 9d Kantam ML, Mahender K, Sreedhar B, Choudhary BM. Tetrahedron 2008; 64: 3351
- 9e Oskooie HA, Heravi MM, Sadnia A, Jannati F, Behbahani FK. Monatsh. Chem. 2008; 139: 27
- 9f Arefi HA, Khaksar S, Shiroodi RK. J. Mol. Catal. A: Chem. 2007; 271: 142
- 9g Shaabani A, Maleki A. Appl. Catal., A 2007; 331: 149
- 9h Yadav JS, Reddy BV. S, Eeshwarain B, Srinivas M. Tetrahedron 2004; 60: 1767
- 9i Rafiee E, Rashidzadeh S, Azad A. J. Mol. Catal. A: Chem. 2007; 261: 49
- 9j Yadav JS, Reddy BV. S, Eshwaraiah B, Srinivas M, Vishnumurthy P. New J. Chem. 2003; 27: 462
- 9k De SK. Synth. Commun. 2005; 35: 1577
- 9l Shaabani A, Maleki A, Soudi MR, Mofakham H. Catal. Commun. 2009; 10: 945
- 9m Niknam K, Saberi D, Sefat MN. Tetrahedron Lett. 2010; 51: 2959
- 9n Kazemeini A, Azizi N, Saidi MR. Russ. J. Org. Chem. 2006; 42: 48
- 9o Jarusiewicz J, Choe Y, Yoo KS, Park CP, Jung KW. J. Org. Chem. 2009; 74: 2873
- 9p Karimi B, Maleki A, Elhamifar D, Clark JH, Hunt AJ. Chem. Commun. 2010; 46: 6947
- 9q Khan NH, Saravanan S, Kureshy RI, Abdi SH. R, Bajaj HC. Tetrahedron: Asymmetry 2010; 21: 2076
- 9r Sudhakar D, Rao VM, Suresh M, Rao CV. J. Chem. Res. 2010; 34: 12
- 9s Karimi B, Maleki A. Chem. Commun. 2009; 5180
- 10a Garima Synlett 2010; 1426
- 10b Heck M.-P, Matt C, Wagner A, Toupet L, Mioskowski C. Eur. J. Org. Chem. 2010; 966
- 10c Salome C, Kohn H. Tetrahedron 2009; 65: 456
- 10d Bressy C, Alberico D, Lautens M. J. Am. Chem. Soc. 2005; 127: 13148
- 10e Bartley DM, Coward JK. J. Org. Chem. 2005; 70: 6757
- 10f Dormoy J.-R, Castro B. e-EROS Encyclopedia of Reagents for Organic Synthesis 2001;
- 11a Chaturvedi D, Kumar A, Ray S. Tetrahedron Lett. 2003; 44: 7637
- 11b Chaturvedi D, Ray S. Tetrahedron Lett. 2006; 47: 1307
- 11c Chaturvedi D, Ray S. Tetrahedron Lett. 2007; 48: 149
- 11d Chaturvedi D, Mishra N, Mishra V. Tetrahedron Lett. 2007; 48: 5043
- 11e Chaturvedi D, Mishra N, Mishra V. Synthesis 2008; 355
- 11f Chaturvedi D, Chaturvedi AK, Mishra N, Mishra V. Tetrahedron Lett. 2008; 49: 4886
- 11g Chaturvedi AK, Chaturvedi D, Mishra N, Mishra V. J. Iran. Chem. Soc. 2010; 7: 702
- 11h Chaturvedi AK, Chaturvedi D, Mishra N, Mishra V. J. Iran. Chem. Soc. 2011; 8: 396
- 12 Synthesis of α-Aminonitriles; Typical Procedure: A mixture of aldehyde (1 mmol), amine (1 mmol), triphenylphosphine dibromide (10 mol%), and trimethylsilylcyanide (1.2 mmol) was stirred at room temperature until the reaction was complete (monitored by TLC). The reaction mixture was then extracted with EtOAc (×3), dried over anhydrous Na2SO4, filtered, and concentrated. Purification of the crude product by chromatography on silica gel (60–120 mesh; petroleum ether–EtOAc, 5:1) gave the pure product. 2-Anilino-2-phenylacetonitrile (Table 3, Entry 1): Light-yellow solid; mp 85–86 °C; IR (CHCl3): 3368, 3055, 2233, 1602, 1502 cm–1; 1H NMR (300 MHz, CDCl3): δ = 4.03 (d, J = 9 Hz, 1 H), 5.41 (d, J = 9 Hz, 1 H), 6.76 (d, J = 9 Hz, 2 H), 6.90 (t, J = 6 Hz, 1 H), 7.30 (t, J = 9 Hz, 2 H), 7.44 (m, 3 H), 7.59 (m, 2 H); 13C NMR (75 MHz, CDCl3): δ = 49.8, 114.0, 118.1, 119.9, 127.0, 128.3, 129.4, 129.8, 133.6, 144.6; MS (ESI): m/z = 208.2 [M]+; Anal. Calcd for C14H12N2: C, 80.74; H, 5.81; N, 13.45. Found: C, 80.80; H, 5.76; N, 13.47. 2-Anilino-2-(4-chlorophenyl)acetonitrile (Table 3, Entry 2): White solid; mp 96–98 °C; IR (CHCl3): 3365, 3055, 2235, 1603, 1504 cm–1; 1H NMR (300 MHz, CDCl3): δ = 4.02 (d, J = 6 Hz, 1 H), 5.41 (d, J = 9 Hz, 1 H), 6.75 (d, J = 9 Hz, 2 H), 6.92 (t, J = 6 Hz, 1 H), 7.28 (m, 2 H), 7.42 (d, J = 9 Hz, 2 H), 7.53 (d, J = 6 Hz, 2 H); 13C NMR (75 MHz, CDCl3): δ = 49.5, 114.2, 117.8, 120.4, 128.4, 129.2, 129.6, 132.8, 135.4, 144.3; MS (ESI): m/z = 242.1 [M]+; Anal. Calcd for C14H11ClN2: C, 69.28; H, 4.57; N, 11.54; Found: C, 69.19; H, 4.63; N, 11.56. 2-Anilino-2-(4-nitrophenyl)acetonitrile (Table 3, Entry 3): Gummy solid; IR (CHCl3): 3381, 3063, 2225, 1601, 1550, 1502 cm–1; 1H NMR (300 MHz, CDCl3): δ = 4.08 (d, J = 9 Hz, 1 H), 5.57 (d, J = 9 Hz, 1 H), 6.68 (d, J = 9 Hz, 2 H), 6.78 (t, J = 8 Hz, 1 H), 7.29 (t, J = 9 Hz, 2 H), 7.8 (d, J = 9 Hz, 2 H), 8.1 (d, J = 9 Hz, 2 H); 13C NMR (75 MHz, CDCl3): δ = 49.8, 115.3, 118.0, 127.0, 127.7, 127.8, 128.6, 129.0, 133.8, 144.1, 145.0; MS (ESI): m/z = 276.2 [M + Na]+; Anal. Calcd for C14H11N3O2: C, 66.40; H, 4.38; N, 16.59; Found: C, 66.46; H, 4.40; N, 16.51.