Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2013; 24(3): 375-378
DOI: 10.1055/s-0032-1318027
DOI: 10.1055/s-0032-1318027
letter
Copper(II)-Catalyzed Enantioselective Fluorination of β-Keto Esters Using Chiral Spiro Oxazoline Ligands
Further Information
Publication History
Received: 25 November 2012
Accepted after revision: 17 December 2012
Publication Date:
10 January 2013 (online)
Abstract
Highly enantioselective fluorination of α-alkyl-β-keto esters was performed using a chiral Lewis acid catalyst prepared from Cu(OTf)2 and chiral spiro oxazoline ligands. The fluorination proceeded in a highly enantioselective manner both when cyclic and acyclic substrates were applied to the reaction. Fluorination of α-alkylmalonates was also performed to afford the corresponding products in good enantioselectivity.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Fluorine in Medicinal Chemistry and Chemical Biology. Ojima I. Wiley and Sons; New York: 2009
- 1b Bégué J.-P, Bonnet-Delphon D. Bioorganic and Medicinal Chemistry of Fluorine . Wiley and Sons; Hoboken: 2008
- 2a Smith AM. R, Hii KK. Chem. Rev. 2011; 111: 1637
- 2b Valero G, Companyó S, Rios R. Chem. Eur. J. 2011; 17: 2018
- 2c Lectard S, Hamashima Y, Sodeoka M. Adv. Synth. Catal. 2010; 352: 2708
- 2d Kang YK, Kim DY. Curr. Org. Chem. 2010; 14: 917
- 2e Cahard D, Xu X, Couve-Bonnaire S, Pannecoucke X. Chem. Soc. Rev. 2010; 39: 558
- 2f Shibatomi K. Synthesis 2010; 2679
- 2g Ueda M, Kano T, Maruoka K. Org. Biomol. Chem. 2009; 7: 2005
- 2h Ma J.-A, Cahard D. Chem. Rev. 2008; 108: PR1
- 2i Brunet VA, O’Hagan D. Angew. Chem. Int. Ed. 2008; 47: 1179
- 2j Shibata N, Ishimaru T, Nakamura S, Toru T. J. Fluorine Chem. 2007; 128: 469
- 3a Hintermann L, Togni A. Angew. Chem. Int. Ed. 2000; 39: 4359
- 3b Hamashima Y, Yagi K, Takano H, Tamás L, Sodeoka M. J. Am. Chem. Soc. 2002; 124: 14530
- 3c Hamashima Y, Takano H, Hotta D, Sodeoka M. Org. Lett. 2003; 5: 3225
- 3d Shibata N, Ishimaru T, Nagai T, Kohno J, Toru T. Synlett 2004; 1703
- 3e Shibata N, Kohno J, Takai K, Ishimaru T, Nakamura S, Toru T, Kanemasa S. Angew. Chem. Int. Ed. 2005; 44: 4204
- 3f Hamashima Y, Suzuki T, Takano H, Shimura Y, Tsuchiya Y, Moriya K, Goto T, Sodeoka M. Tetrahedron 2006; 62: 7168
- 3g Shibatomi K, Tsuzuki Y, Nakata S, Iwasa S. Synlett 2007; 551
- 3h Althaus M, Becker C, Togni A, Mezzetti A. Organometallics 2007; 26: 5902
- 3i Shibatomi K, Tsuzuki Y, Iwasa S. Chem. Lett. 2008; 37: 1098
- 3j Wang X, Lan Q, Shirakawa S, Maruoka K. Chem. Commun. 2010; 46: 321
- 3k Kawatsura M, Hayashi S, Komatsu Y, Hayase S, Itoh T. Chem. Lett. 2010; 39: 466
- 3l Kang SH, Kim DY. Adv. Synth. Catal. 2010; 352: 2783
- 3m Hintermann L, Perseghini M, Togni A. Beilstein J. Org. Chem. 2011; 7: 1421
- 3n Shibatomi K, Narayama A, Soga Y, Muto T, Iwasa S. Org. Lett. 2011; 13: 2944
- 3o Deng Q.-H, Wadepohl H, Gade LH. Chem. Eur. J. 2011; 17: 14922
- 3p Bertogg A, Hintermann L, Huber DP, Perseghini M, Sanna M, Togni A. Helv. Chim. Acta 2012; 95: 353
- 3q Xu J, Hu Y, Huang D, Wang K.-H, Xu C, Niu T. Adv. Synth. Catal. 2012; 354: 515
- 4a Suzuki T, Goto T, Hamashima Y, Sodeoka M. J. Org. Chem. 2007; 72: 246
- 4b Reddy DS, Shibata N, Nagai J, Nakamura S, Toru T, Kanemasa S. Angew. Chem. Int. Ed. 2008; 47: 164
- 5a Bernardi L, Jørgensen KA. Chem. Commun. 2005; 1324
- 5b Hamashima Y, Suzuki T, Shimura Y, Shimizu T, Umebayashi N, Tamura T, Sasamoto N, Sodeoka M. Tetrahedron Lett. 2005; 46: 1447
- 5c Kim SM, Kim HR, Kim DY. Org. Lett. 2005; 7: 2309 ; see also ref. 3f and 3n
- 6a Kim HR, Kim DY. Tetrahedron Lett. 2005; 46: 3115
- 6b Kang YK, Cho MJ, Kim SM, Kim DY. Synlett 2007; 1135
- 6c Moriya K, Hamashima Y, Sodeoka M. Synlett 2007; 1139
- 6d Jacquet O, Clément ND, Blanco C, Belmonte MM, Benet-Buchholz J, van Leeuwen PW. N. M. Eur. J. Org. Chem. 2012; 4844
- 6e Kwon BK, Mang JY, Kim DY. Bull. Korean Chem. Soc. 2012; 33: 2481
- 7a Hamashima Y, Suzuki T, Takano H, Shimura Y, Sodeoka M. J. Am. Chem. Soc. 2005; 127: 10164
- 7b Ishimaru T, Shibata N, Horikawa T, Yasuda N, Nakamura S, Toru T, Shiro M. Angew. Chem. Int. Ed. 2008; 47: 4157
- 7c Zhang R, Wang D, Xu Q, Jiang J, Shi M. Chin. J. Chem. 2012; 30: 1295 ; see also ref. 3e and 3o
- 8a Shibatomi K, Muto T, Smikawa Y, Narayama A, Iwasa S. Synlett 2009; 241
- 8b Shibatomi K, Soga Y, Narayama A, Fujisawa I, Iwasa S. J. Am. Chem. Soc. 2012; 134: 9836
- 9a Soloshonok VA, Roussel C, Kitagawa O, Sorochinsky AE. Chem. Soc. Rev. 2012; 41: 4180
- 9b Nakamura T, Tateishi K, Tsukagoshi S, Hashimoto S, Watanabe S, Soloshonok VA, Aceña JL, Kitagawa O. Tetrehedron 2012; 68: 4013
- 9c Han J, Nelson DJ, Sorochinsky AE, Soloshonok VA. Curr. Org. Synth. 2011; 8: 310
- 9d Ueki H, Yasumoto M, Soloshonok VA. Tetrahedron: Asymmetry 2010; 21: 1396
- 9e Soloshonok VA, Ueki H, Yasumoto M, Mekala S, Hirschi JS, Singleton DA. J. Am. Chem. Soc. 2007; 129: 12112
- 9f Soloshonok VA. Angew. Chem. Int. Ed. 2006; 45: 766
- 9g Soloshonok VA, Berbasov DO. J. Fluorine Chem. 2006; 127: 597
- 10 General Procedure for the Asymmetric Fluorination of 2 A flame-dried flask under argon was charged with ligand 1 (0.024 mmol), Cu(OTf)2 (0.020 mmol), activated 4 Ǻ MS (140 mg), and toluene (6 mL). After the mixture was stirred for 1 h at 80 °C, β-keto ester 2 (0.20 mmol), and N-fluorobenzenesulfonimide (0.30 mmol) were added successively, and the mixture was stirred at ambient temperature. The reaction mixture was diluted with sat. NaHCO3 solution and extracted with Et2O. The organic layer was dried over Na2SO4, filtered, and concentrated under reduced pressure. The crude product was purified by silica gel chromatography to give the desired product 3. All spectroscopic data of 3a–e, 3h–i, and 5a are in good agreement with those of reported previously. See Supporting Information for details. Spectroscopic characterization data of new compounds are given in the following references.
- 11 tert-Butyl 2-Fluoro-2-benzyl-3-oxobutanoate (3f) The crude mixture was purified by silica gel column chromatography (hexane–EtOAc = 10:1) to give 93% yield of 3f. 1H NMR (500 MHz, CDCl3): δ = 7.31–7.20 (m, 5 H), 3.38 (dd, 1 H, J = 34.0, 14.9 Hz), 3.33 (dd, 1 H, J = 34.8, 14.9 Hz), 2.13 (d, 3 H, J = 4.9 Hz), 1.41 (s, 9 H). 13C NMR (126 MHz, CDCl3): δ = 202.6 (d, J = 29.3 Hz), 164.7 (d, J = 25.3 Hz), 133.5, 130.5, 128.4, 127.4, 100.1 (d, J = 198.4 Hz), 84.1, 39.5 (d, J = 20.7 Hz), 27.8, 26.1. 19F NMR (470 MHz, CDCl3): δ = –163.6. [α]D 23 +37.9 (c 0.8, CHCl3). FTIR (neat): 2980, 2932, 1750, 1496, 1456, 1424, 1395, 1370, 1286, 1252, 1155, 1086, 839, 742, 701, 526, 442, 420, 410 cm–1. Anal. Calcd (%) for C15H19FO3: C, 67.65; H, 7.19. Found: C, 67.48; H, 7.18. The ee of 3f was determined by HPLC (hexane–2-PrOH = 100:1, 1.0 mL/min) using a CHIRALCEL OJ-H column (0.46 cm × 25 cm): t R (major isomer) = 8.4 min; t R (minor isomer) = 12.0 min.
- 12 tert-Butyl 2-Acetyl-2-fluoro-4-oxo-4-phenylbutanoate (3g) The crude mixture was purified by silica gel column chromatography (hexane–EtOAc = 5:1) to give 90% yield of 3g. 1H NMR (500 MHz, CDCl3): δ = 7.93 (d, 2 H, J = 8.4 Hz), 7.59 (dd, 1 H, J = 8.4, 7.6 Hz), 7.47 (dd, 2 H, J = 8.0, 7.6 Hz), 3.95 (dd, 1 H, J = 38.2, 18.3 Hz), 3.90 (dd, 1 H, J = 28.3, 18.3 Hz), 2.52 (d, 3 H, J = 5.0 Hz), 1.50 (s, 9 H). 13C NMR (126 MHz, CDCl3): δ = 203.5 (d, J = 28.8 Hz), 194.0, 164.5 (d, J = 24.0 Hz), 135.7, 133.8, 128.7, 128.1, 97.5 (d, J = 201.5 Hz), 84.3, 43.7 (d, J = 20.4 Hz), 27.6, 25.5. 19F NMR (470 MHz, CDCl3): δ = –163.7. [α]D 24 +38.9 (c 1.0, CHCl3). FTIR (neat): 3064, 2980, 2933, 2355, 1745, 1362, 1298, 1252, 1156, 1074, 992, 841, 756, 690, 624, 578, 526, 416 cm–1. Anal. Calcd (%) for C16H19FO4: C, 65.29; H, 6.51. Found: C, 65.27; H, 6.52. The ee of 3g was determined by HPLC (hexane–2-PrOH = 100:1, 1.0 mL/min) using a CHIRALPAK IC column (0.46 cm × 25 cm): t R (major isomer) = 26.1 min; t R (minor isomer) = 23.3 min.
- 13 tert-Butyl 2-Fluoro-3-(furan-2-yl)-2-methyl-3-oxopropanoate (3j) The crude mixture was purified by silica gel column chromatography (hexane–EtOAc = 10:1) to give 83% yield of 3j. 1H NMR (500 MHz, CDCl3): δ = 7.70–7.67 (m, 1 H), 7.48–7.45 (m, 1 H), 6.59–6.56 (m, 1 H), 1.80 (d, 3 H, J = 22.6 Hz), 1.42 (s, 9 H). 13C NMR (126 MHz, CDCl3): δ = 180.4 (d, J = 26.4 Hz), 166.6 (d, J = 25.2 Hz), 148.9, 147.8, 121.7, 112.5, 96.1 (d, J = 193.1 Hz), 84.0, 27.7, 19.9 (d, J = 24.0 Hz). 19F NMR (470 MHz, CDCl3): δ = –154.2 (q, J = 22.9 Hz). [α]D 23 +76.3 (c 0.2, CHCl3). FTIR (neat): 3141, 2982, 2937, 1748, 1687, 1565, 1462, 1380, 1303, 1264, 1137, 1028, 989, 936, 845, 771, 588, 517, 428 cm–1. Anal. Calcd (%) for C12H15FO4: C, 59.50; H, 6.24. Found: C, 59.50; H, 6.26. The ee of 3j was determined by HPLC (hexane–2-PrOH = 100:1, 1.0 mL/min) using a CHIRALPAK IE column (0.46 cm × 25 cm): t R (major isomer) = 13.8 min; t R (minor isomer) = 14.6 min.
- 14 Di(naphthalen-1-yl)methyl Methyl 2-chloro-2-methylmalonate (5b) The crude mixture was purified by silica gel column chromatography (hexane–CH2Cl2 = 1:1) to give 81% yield of 5b. 1H NMR (500 MHz, CDCl3): δ = 8.48 (s, 1 H), 8.00–7.94 (m, 1 H), 7.94–7.82 (m, 5 H), 7.55–7.36 (m, 7 H), 7.34–7.30 (m, 1 H), 3.52 (s, 3 H), 1.80 (d, 3 H, J = 22.1 Hz). 13C NMR (126 MHz, CDCl3): δ = 166.8 (d, J = 25.2 Hz), 165.8 (d, J = 26.4 Hz), 133.8, 133.8, 133.5, 133.5, 131.0, 130.8, 129.5, 129.4, 129.0, 128.9, 126.8, 126.8, 126.3, 126.0, 125.9, 125.9, 125.2, 125.2, 123.2,123.1, 92.4 (d, J = 195.5 Hz), 73.3, 53.0, 20.6 (d, J = 22.8 Hz). 19F NMR (470 MHz, CDCl3): δ = –157.6 (q, J = 22.9 Hz). [α]D 23 +1.90 (c 1.0, CHCl3). FTIR (neat): 2980, 2932, 1750, 1496, 1456, 1424, 1395, 1370, 1286, 1252, 1155, 1086, 839, 742, 701, 526, 442, 420, 410 cm–1. Anal. Calcd (%) for C26H21FO4: C, 74.99; H, 5.08. Found: C, 75.01; H, 5.08. The ee of 5b was determined by HPLC (hexane–CH2Cl2 = 3:1, 1.0 mL/min) using a CHIRALPAK IC column (0.46 cm × 25 cm): t R (major isomer) = 7.9 min; t R (minor isomer) = 10.2 min.
For recent reviews on enantioselective construction of fluorinated chiral carbon centers, see:
Selected examples of highly enantioselective fluorination of β-keto esters, see:
Malonates and β-alkoxylactones:
β-Keto phosphonates:
α-Cyano esters, α-cyano phosphonates, and α-cyano sulfones:
Oxindoles:
We confirmed that the optical purity of selected products, 3a, 3c, 3e, 3h, and 5b, does not change even after chromatographic purification using achiral silica gel and subsequent solvent evaporation. For selected papers on the self-disproportionation effect of the enantiomers, see: