Synlett 2013; 24(10): 1238-1242
DOI: 10.1055/s-0033-1338946
cluster
© Georg Thieme Verlag Stuttgart · New York

Gold(I)-Catalyzed Intramolecular [4+3]-Cycloaddition Reactions with Furan Propargyl Esters as the Substrates: Carbenoid vs. Stabilized Allyl Cation

Benjamin W. Gung*
Department of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, USA   Fax: +1(513)5295715   eMail: gungbw@muohio.edu
,
Ryan C. Conyers
Department of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, USA   Fax: +1(513)5295715   eMail: gungbw@muohio.edu
,
Josh Wonser
Department of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, USA   Fax: +1(513)5295715   eMail: gungbw@muohio.edu
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 02. April 2013

Accepted after revision: 22. April 2013

Publikationsdatum:
28. Mai 2013 (online)


Abstract

The tricyclic ring system with an oxabicyclo[3.2.1]octadiene and a fused six-membered ring was produced efficiently using the readily available propargyl ester furan substrate in the presence of a Au(I) complex. The reaction involves a tandem 3,3-rearrangement of the propargyl ester followed by an intramolecular [4+3]-cycloaddition reaction. Both the primary ligand of the gold complex (N-heterocyclic carbene; NHC) and a neutral dynamic ligand (PhCN) are important for the success of the reaction.

Supporting Information

 
  • References and Notes

  • 1 Aoki S, Watanabe Y, Sanagawa M, Setiawan A, Kotoku N, Kobayashi M. J. Am. Chem. Soc. 2006; 128: 3148
  • 3 Gung BW, Craft DT, Bailey LN, Kirschbaum K. Chem. Eur. J. 2010; 16: 639
  • 6 Nilson MG, Funk RL. J. Am. Chem. Soc. 2011; 133: 12451
  • 8 Correa A, Marion N, Fensterbank L, Malacria M, Nolan SP, Cavallo L. Angew. Chem. Int. Ed. 2008; 47: 718
  • 9 Wang SZ, Zhang LM. J. Am. Chem. Soc. 2006; 128: 8414
  • 10 Hashmi AS. K, Yang WB, Yu Y, Hansmann MM, Rudolph M, Rominger F. Angew. Chem. Int. Ed. 2013; 52: 1329
  • 11 Hashmi AS. K, Weyrauch JP, Rudolph M, Kurpejovic E. Angew. Chem. Int. Ed. 2004; 43: 6545
  • 12 Hashmi AS. K, Blanco MC, Kurpejovic E, Frey W, Bats JW. Adv. Synth. Catal. 2006; 348: 709
  • 13 Miki K, Fujita M, Uemura S, Ohe K. Org. Lett. 2006; 8: 1741
  • 15 Becke AD. Phys. Rev. A: Atom. Mol. Optical Phys. 1988; 38: 3098
  • 17 Ragan JA, Murry JA, Castaldi MJ, Conrad AK, Jones BP, Li B, Makowski TW, McDermott R, Sitter BJ, White TD, Young GR. Org. Process Res. Dev. 2001; 5: 498
  • 18 Rogers C, Keay BA. Can. J. Chem. 1992; 70: 2929
  • 19 Harwood LM, Leeming SA, Isaacs NS, Jones G, Pickard J, Thomas RM, Watkin D. Tetrahedron Lett. 1988; 29: 5017
  • 20 Gung BW, Craft DT. Tetrahedron Lett. 2009; 50: 2685
  • 21 de Fremont P, Scott NM, Stevens ED, Nolan SP. Organometallics 2005; 24: 2411
  • 22 Shen HC. Tetrahedron 2008; 64: 7847
  • 23 Gung BW, Bailey LN, Craft DT, Barnes CL, Kirschbaum K. Organometallics 2010; 29: 3450
  • 24 Jafarpour L, Stevens ED, Nolan SP. J. Organomet. Chem. 2000; 606: 49
  • 25 de Fremont P, Marion N, Nolan SP. J. Organomet. Chem. 2009; 694: 551
  • 26 Amijs CH. M, Lopez-Carrillo V, Raducan M, Perez-Galan P, Ferrer C, Echavarren AM. J. Org. Chem. 2008; 73: 7721
  • 27 General Procedure for the Au(I)-Catalyzed Intramolecular [4+3]-Cycloadditions: To a round-bottom flask equipped with a stirring bar under an atmosphere of nitrogen were added AgSbF6 (2 mg, 0.007 mmol) and IPrAuCl (0.007 mmol) in freshly distilled CH2Cl2 (0.5 mL) and stirred for 5 min. The propargyl ester (0.07 mmol) dissolved in freshly distilled CH2Cl2 (0.5 mL) was added dropwise to the reaction and stirred at r.t. and monitored with 1H NMR. The reaction mixture was diluted with Et2O, filtered through Celite, the solvent removed under reduced pressure, and the residue purified over silica gel column. [4+3]-Cycloaddition Product 26: 1H NMR (300 MHz, CDCl3): δ = 0.97 (t, J = 7.35 Hz, 3 H), 1.04–1.20 (m, 1 H), 1.22–1.48 (m, 3 H), 1.68–1.89 (m, 4 H), 1.97 (d, J = 13.5 Hz, 1 H), 2.17 (s, 3 H), 2.43 (d, J = 17 Hz, 1 H), 2.89–2.92 (m, 1 H), 5.02 (d, J = 4.5 Hz, 1 H), 5.93 (d, J = 6.0 Hz, 1 H), 6.67 (d, J = 6.0 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 11.90, 18.83, 20.45, 23.27, 24.29, 29.70, 32.21, 42.05, 80.00, 83.42, 126.75, 129.47, 139.44, 141.89, 168.66. LCMS: m/z [M + Na] calcd for C15H20O3: 271.1; found: 271.1. [4+3]-Cycloaddition Product 27: 1H NMR (500 MHz, CDCl3): δ = 1.24–1.46 (m, 4 H), 1.91–1.74 (m, 4 H), 1.99 (d, J = 13.0 Hz, 1 H), 2.11 (s, 3 H), 2.20–2.11 (m, 2 H), 2.45 (d, J = 14.5 Hz, 1 H), 3.05 (m, 1 H), 5.04 (m, 3 H), 5.81 (m, 1 H), 5.96 (d, J = 6.0 Hz, 1 H), 6.71 (d, J = 6.0 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 20.5, 23.2, 24.0, 24.4, 25.0, 31.4, 32.2, 39.9, 79.9, 83.4, 115.2, 126.6, 129.7, 137.8, 139.2, 142.0, 168.6. LCMS: m/z [M + Na] calcd for C17H22O3: 297.1; found: 297.1. Enyne Cyclization Product 28: 1H NMR (500 MHz, CDCl3): δ = 0.75 (dd, J = 7.8, 5.4 Hz, 1 H), 1.04 (t, J = 4.8 Hz, 1 H), 1.10–1.38 (m, 2 H), 1.65–1.94 (m, 4 H), 2.04–2.06 (m, 2 H), 2.07 (s, 3 H), 2.14–2.25 (m, 1 H), 2.62 (t, J = 7.5 Hz, 2 H), 5.35 (d, J = 15.5 Hz, 1 H), 5.37–5.49 (m, 2 H), 5.98 (d, J = 3.0 Hz, 1 H), 6.29 (dd, J = 3.0, 1.8 Hz, 1 H), 7.31 (d, J = 1.5 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 13.00, 21.25, 24.36, 26.02, 26.77, 27.34, 27.78, 31.99, 32.06, 78.24, 104.73, 110.03, 127.36, 131.80, 140.69, 156.21, 171.42. LCMS: m/z [M + Na] calcd for C17H22O3: 297.1; found: 297.1.