Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2013; 24(15): 1953-1958
DOI: 10.1055/s-0033-1339482
DOI: 10.1055/s-0033-1339482
letter
Simple and General Procedure for the Synthesis of α,β-Alkynyl Ketones from Nitriles Using Alkynyldimethylaluminum Reagents
Further Information
Publication History
Received: 29 May 2013
Accepted after revision: 01 July 2013
Publication Date:
14 August 2013 (online)
Abstract
A simple and efficient approach for the synthesis of α,β-alkynyl ketones from nitriles and alkynyldimethylaluminum reagents, derived from trimethylaluminum and alkynes, is described. This methodology provides access to a wide range of α,β-alkynyl ketones with aliphatic, aromatic, and heteroaromatic substituents in moderate to high yield (53–90%). In the cases of aryl-substituted nitriles, the product can also be obtained as α,β-alkynyl N-H ketimines in high yield (88–93%).
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett. Included are general information, experimental details, characterization data for all compounds and copies of 1H and 13C NMR spectra.
- Supporting Information
-
References and Notes
- 1a Savarin CG, Murry JA, Dormer PG. Org. Lett. 2002; 4: 2071
- 1b Karpov AS, Müller TJ. J. Org. Lett. 2003; 5: 3451
- 2a Vong BG, Kim SH, Abraham S, Theodorakis EA. Angew. Chem. Int. Ed. 2004; 43: 3947
- 2b Trost BM, Ball ZT. J. Am. Chem. Soc. 2004; 126: 13942
- 3a Chang K.-T, Choi Y.-H, Kim S.-H, Yoon Y.-J, Lee W.-S. J. Chem. Soc., Perkin Trans. 1 2002; 207
- 3b Kel’in AV, Gevorgyan V. J. Org. Chem. 2002; 67: 95
- 3c Sheng H, Lin S, Huang Y. Tetrahedron Lett. 1986; 27: 4893
- 3d Jeevanandam A, Narkunan K, Cartwright C, Ling Y.-C. Tetrahedron Lett. 1999; 40: 4841
- 4a Ge G.-C, Mo D.-L, Ding C.-H, Dai L.-X, Hou X.-L. Org. Lett. 2012; 14: 5756
- 4b Shao J, Huang X, Hong X, Liu B, Xu B. Synthesis 2012; 44: 1798
- 4c Shen Y, Cai S, He C, Lin X, Lu P, Wang Y. Tetrahedron 2011; 67: 8338
- 4d Fu MY, Guo J, Toy PH. Synlett 2011; 989
- 5a Kalinin VN, Shostakovsky MV, Ponomaryov AB. Tetrahedron Lett. 1990; 31: 4073
- 5b Ciattini PG, Morera E, Ortar G, Rossi SS. Tetrahedron 1991; 47: 6449
- 5c Torii S, Okumoto H, Xu L.-H, Sadakane M, Shostakovsky MV, Ponomaryov AB, Kalinin VN. Tetrahedron 1993; 49: 6773
- 5d Dodero VI, Koll LC, Faraoni MB, Mitchell TN, Podesta JC. J. Org. Chem. 2003; 68: 10087
- 5e Ryabukhin DS, Sorokoumov VN, Savicheva EA, Boyarskiy VP, Balova IA, Vasilyev AV. Tetrahedron Lett. 2013; 54: 2369
- 6a Trost BM, Schmidt T. J. Am. Chem. Soc. 1988; 110: 2301
- 6b Cabarrocas G, Ventura M, Maestro M, Mahia J, Villalgordo JM. Tetrahedron: Asymmetry 2000; 11: 2483
- 7a Ahmed MS. M, Mori A. Org. Lett. 2003; 5: 3057
- 7b Liang B, Huang M, You Z, Xiong Z, Lu K, Fathi R, Chen J, Yang Z. J. Org. Chem. 2005; 70: 6097
- 7c Rahman MT, Fukuyama T, Kamata N, Sato M, Ryu I. Chem. Commun. 2006; 2236
- 7d Tambade PJ, Patil YP, Nandurkar NS, Bhanage BM. Synlett 2008; 886
- 8 Shen Q, Huang W, Wang J, Zhou X. Organometallics 2008; 27: 301
- 9a Maruoka K, Yamamoto H. Angew. Chem., Int. Ed. Engl. 1985; 24: 668
- 9b Blumke T, Chen Y.-H, Peng Z, Knochel P. Nat. Chem. 2010; 2: 313
- 9c von Zezschwitz P. Synthesis 2008; 1809
- 10a Starowieyski KB, Pasynkiewicz S, Skowronska-Ptasinska M. J. Organomet. Chem. 1975; 90: C43
- 10b Hirabayashi T, Itoh K, Sakai S, Ishii Y. J. Organomet. Chem. 1970; 25: 33
- 10c Basha A, Lipton M, Weinreb SM. Tetrahedron Lett. 1977; 18: 4171
- 10d Maruoka K, Oishi M, Yamamoto H. J. Org. Chem. 1993; 58: 7638
- 11a Binger P. Angew. Chem., Int. Ed. Engl. 1963; 2: 686
- 11b Wang B, Bonin M, Micouin L. Org. Lett. 2004; 6: 3481
- 12 Sasaki M, Hatta M, Tanino K, Miyashita M. Tetrahedron Lett. 2004; 45: 1911
- 13 Blanchet J, Bonin M, Chiaroni A, Micouin L, Riche C, Husson H.-P. Tetrahedron Lett. 1999; 40: 2935
- 14 Wang B, Bonin M, Micouin L. Org. Lett. 2004; 6: 3481
- 15 Wang B, Bonin M, Micouin L. J. Org. Chem. 2005; 70: 6126
- 16 Miyashita K, Tsunemi T, Hosokawa T, Ikejiri M, Imanishi T. Tetrahedron Lett. 2007; 48: 3829
- 17 Jackowski O, Lecourt T, Micouin L. Org. Lett. 2011; 13: 5664
- 18a Lee S.-H, Yoshida K, Matsushita H, Clapham B, Koch G, Zimmermann J, Janda KD. J. Org. Chem. 2004; 69: 8829
- 18b Matsushita H, Lee S.-H, Yoshida K, Clapham B, Koch G, Zimmermann J, Janda KD. Org. Lett. 2004; 6: 4627
- 18c Lee S.-H, Matsushita H, Koch G, Zimmermann J, Clapham B, Janda KD. J. Comb. Chem. 2004; 6: 822
- 18d Lee S.-H, Matsushita H, Clapham B, Janda KD. Tetrahedron 2004; 60: 3439
- 18e Matsushita H, Lee S.-H, Joung M, Clapham B, Janda KD. Tetrahedron Lett. 2004; 45: 313
- 18f Qi L, Meijler MM, Lee S.-H, Sun C, Janda KD. Org. Lett. 2004; 6: 1673
- 18g Lee S.-H, Clapham B, Koch G, Zimmermann J, Janda KD. Org. Lett. 2003; 5: 511
- 18h Lee S.-H, Clapham B, Koch G, Zimmermann J, Janda KD. J. Comb. Chem. 2003; 5: 188
- 18i Clapham B, Lee S.-H, Koch G, Zimmermann J, Janda KD. Tetrahedron Lett. 2002; 43: 5407
- 19 Korbad BL, Lee S.-H. Bull. Korean Chem. Soc. 2013; 34: 1266
- 20 General Experimental Procedure for the Synthesis of Ketone 4aa (Table 2, Entry 1) and N-H Ketimine 3aa (Table 3, Entry 1) The alane (alkynyldimethylaluminum) solution 2 was prepared according to the procedure described in ref. 11b. Alane 2a solution (1.42 mL, 1.4 M in toluene, 2.0 mmol) was added dropwise to a solution of nitrile 1a (0.103 g, 1.0 mmol) in toluene (4 mL). The resulting reaction mixture was stirred at 60 °C for 6 h, and the progress of the reaction was monitored by TLC. After cooling, the reaction was quenched by pouring of the reaction mixture into a slurry of Merck silica gel 60 (10 g, 230–400 mesh) in CHCl3 (100 mL). After being stirred for 12 h, the resultant mixture was filtered and washed with CHCl3. The combined filtrate was evaporated in vacuo to provide the crude residue. This was then purified by column chromatography on silica gel using EtOAc–hexanes (1:20) as eluent to provide the ketone 4aa (0.170 g, 0.85 mmol, 85%) as colorless oil. To synthesize N-H ketimine 3aa as product, the reaction was performed under the same reaction condition as described above. Then, the reaction mixture was diluted with THF (5 mL), and quenched with careful addition of a THF–H2O mixture (5 mL, 8:2). Then the resulting mixture was stirred for 20 min, filtered through Celite, and washed with THF. The combined filtrate was evaporated to dryness to provide the crude product, which then purified by column chromatography on silica gel using EtOAc–hexanes (1:9) containing 3% Et3N as eluent to provide the N-H ketimine 3aa (0.180 g, 0.90 mmol, 90%) as colorless oil. 1-Phenyloct-2-yn-1-one (4aa) 1H NMR (400 MHz, CDCl3): δ = 8.18–8.09 (m, 2 H), 7.63–7.54 (m, 1 H), 7.51–7.41 (m, 2 H), 2.49 (t, J = 7.2 Hz, 2 H), 1.68 (quint, J = 7.2 Hz, 2 H), 1.50–1.32 (m, 4 H), 0.93 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 178.5, 137.2, 134.1, 129.8, 128.7, 97.1, 79.9, 31.3, 27.7, 22.3, 19.4, 14.1. HRMS (EI+): m/z [M]+ calcd for C14H16O: 200.1201; found: 200.1198. 1-Phenyloct-2-yn-1-imine (3aa) 1H NMR (400 MHz, CDCl3): δ = 10.12 (br s, 1 H), 8.07 (s, 2 H), 7.50–7.30 (m, 3 H), 2.43 (t, J = 7.2 Hz, 2 H), 1.64 (quint, J = 7.2 Hz, 2 H), 1.45–1.27 (m, 4 H), 0.928 (t, J = 7.2 Hz, 3 H). 13C NMR (150 MHz, CDCl3): δ = 160.5, 136.7, 131.2, 128.2, 127.5, 95.1, 78.0, 31.0, 27.8, 22.1, 19.1, 13.9. MS (EI): m/z (%) calcd for C14H17N 199; found: 199 (10) [M]+, 198 (84), 156 (100), 143 (77), 115 (38), 77 (25).
- 21a Robertson GM. Imines and their N-Substituted Derivatives: NH, NR and N-Haloimines . In Comprehensive Organic Functional Group Transformations . Katritzky AR, Meth-Cohn O, Rees CW. 1st ed., Vol. 3 Elsevier Science; Oxford: 1995: 403
- 21b Chen G.-M, Brown HC. J. Am. Chem. Soc. 2000; 122: 4217
- 22a Yang X, Zhao L, Fox T, Wang Z.-X, Berke H. Angew Chem. Int. Ed. 2010; 49: 2058
- 22b Dejaegher Y, Mangelinckx S, De Kimpe N. Synlett 2002; 113
- 22c Ezhova MB, Patrick BO, James BR. Organometallics 2005; 24: 3753
- 23 O’Donmell MJ, Polt RL. J. Org. Chem. 1982; 47: 2663 ; and references cited therein
- 24 Sun Z.-M, Chen S.-P, Zhao P. Chem. Eur. J. 2010; 16: 2619
- 25 Laouiti A, Rammah MM, Rammah MB, Marrot J, Couty F, Evano G. Org. Lett. 2012; 14: 6
- 26 Dhudshia B, Tiburcio J, Thadani AN. Chem. Commun. 2005; 5551
For some recent examples, see: