Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(1): 1-7
DOI: 10.1055/s-0033-1340153
DOI: 10.1055/s-0033-1340153
synpacts
Total Synthesis of (+)-Fusarisetin A: A Biomimetic Approach
Further Information
Publication History
Received: 26 August 2013
Accepted after revision: 17 September 2013
Publication Date:
05 November 2013 (online)
Abstract
This article outlines our recent efforts to synthesize (+)-fusarisetin A, a naturally occurring 3-acyltetramic acid, by a route based on a hypothetical biosynthesis. Our research suggests that the biosynthesis of (+)-fusarisetin A might involve the aerobic oxidation of equisetin, possibly mediated by metal oxidants or by photochemically produced reactive oxygen species.
-
References
- 1 Newman DJ. J. Nat. Prod. 2012; 75: 311
- 2 Nicolaou KC, Montagnon T. Molecules That Changed the World: A Brief History of the Art and Science of Synthesis and Its Impact on Society. Wiley; Weinheim: 2008
- 3a Hendrickson JB. J. Am. Chem. Soc. 1975; 97: 5784
- 3b Gaich T, Baran PS. J. Org. Chem. 2010; 75: 4657
- 4a Trost BM, Salzmann TN. J. Am. Chem. Soc. 1973; 95: 6840
- 4b Trost BM. Science 1983; 219: 245
- 4c Shenvi RA, O’Malley DP, Baran PS. Acc. Chem. Res. 2009; 42: 530
- 5a Trost BM. Science 1991; 254: 1471
- 5b Trost BM. Angew. Chem. Int. Ed. Engl. 1995; 34: 259
- 5c Wender PA, Croatt MP, Witulski B. Tetrahedron 2006; 62: 7505
- 5d Wender PA, Verma VA, Paxton TJ, Pillow TH. Acc. Chem. Res. 2008; 41: 40
- 5e Wender PA, Miller BL. Nature 2009; 460: 197
- 5f Richter JM, Ishihara Y, Masuda T, Whitefield BW, Llamas T, Pohjakallio A, Baran PS. J. Am. Chem. Soc. 2008; 130: 17938
- 5g Burns NZ, Baran PS, Hoffmann RW. Angew. Chem. Int. Ed. 2009; 48: 2854
- 6 For a review on tetramic acid type natural products, see: Royles BJ. L. Chem. Rev. 1995; 95: 1981
- 7 Jang J.-H, Asami Y, Jang J.-P, Kim S.-O, Moon DO, Shin K.-S, Hashizume D, Muroi M, Saito T, Oh H, Kim BY, Osada H, Ahn JS. J. Am. Chem. Soc. 2011; 133: 6865
- 8a Deng J, Zhu B, Lu Z, Yu H, Li A. J. Am. Chem. Soc. 2012; 134: 920
- 8b Xu J, Caro-Diaz EJ. E, Trzoss L, Theodorakis EA. J. Am. Chem. Soc. 2012; 134: 5072
- 8c Xu J, Caro-Diaz EJ. E, Lacoske MH, Hung C.-I, Jamora C, Theodorakis EA. Chem. Sci. 2012; 3: 3378
- 8d Huang J, Fang L, Long R, Shi L.-L, Shen H.-J, Li C.-C, Yang Z. Org. Lett. 2013; 15: 4018
- 9a Yin J, Wang C, Kong LL, Cai SJ, Gao SH. Angew. Chem. Int. Ed. 2012; 51: 7786
- 9b Yin J, Kong LL, Wang C, Shi YB, Cai SJ, Gao SH. Chem. Eur. J. 2013; 19: 13040
- 9c Yin J, Kong LL, Gao SH. Youji Huaxue 2013; 33: 259
- 10a Burmeister HR, Bennett GA, Vesonder RF, Hesseltine CW. Antimicrob. Agents Chemother. 1974; 5: 634
- 10b Phillips NJ, Goodwin JT, Fraiman A, Cole RJ, Lynn DG. J. Am. Chem. Soc. 1989; 111: 8223
- 11 Marfori EC, Kajiyama S, Fukusaki E, Kobayashi A. Z. Naturforsch., C 2002; 57: 465
- 12 Putri SP, Kinoshita H, Ihara F, Igarashi Y, Nihira T. J. Antibiot. 2010; 63: 195
- 13a Craig D. Chem. Soc. Rev. 1987; 16: 187
- 13b Nicolaou KC, Snyder SA, Montagnon T, Vassilikogiannakis G. Angew. Chem. Int. Ed. 2002; 41: 1668
- 13c Takao K, Munakata R, Tadano K. Chem. Rev. 2005; 105: 4779
- 14a Turos E, Audia JE, Danishefsky SJ. J. Am. Chem. Soc. 1989; 111: 8231
- 14b Burke LT, Dixon DJ, Ley SV, Rodríguez F. Org. Lett. 2000; 2: 3611
- 14c Burke LT, Dixon DJ, Ley SV, Rodríguez F. Org. Biomol. Chem. 2005; 3: 274
- 14d Kumiko YK, Shindo M, Shishido K. Tetrahedron Lett. 2001; 42: 2517
- 15 Nishikawa Y, Kitajima M, Kogure N, Takayama H. Tetrahedron 2009; 65: 1608
- 16a Snider BB. Chem. Rev. 1996; 96: 339
- 16b Melikyan GG. Org. React. (N. Y.) 1997; 49: 427
- 16c Snider BB. Tetrahedron 2009; 65: 10738
- 17 For a review on Mn(III)-based peroxidation, see: Nishino H. Top. Heterocycl. Chem. 2006; 6: 39
- 18 Gust D, Moore TA. Science 1989; 244: 35
- 19a Cano-Yelo H, Deronzier A. J. Chem. Soc., Perkin Trans. 2 1984; 1093
- 19b MacMillan DW. C. Nature 2008; 455: 304
- 20a Zen J.-M, Liou S.-L, Kumar AS, Hsia M.-S. Angew. Chem. Int. Ed. 2003; 42: 577
- 20b Zhang M, Chen C.-C, Ma W.-H, Zhao J.-C. Angew. Chem. Int. Ed. 2008; 47: 9730
- 20c Zou YQ. L, Lu Q, Fu L, Chang NJ, Rong J, Chen JR, Xiao WJ. Angew. Chem. Int. Ed. 2011; 50: 7171
- 20d Xuan J, Cheng Y, An J, Lu LQ, Zhang XX, Xiao WJ. Chem. Commun. 2011; 47: 8337
- 20e Zou YQ, Chen JR, Liu XP, Lu LQ, Davis RL, Jørgensen KA, Xiao WJ. Angew. Chem. Int. Ed. 2012; 51: 784
- 20f Su Y, Zhang L, Jiao N. Org. Lett. 2011; 13: 2168
- 21a Wipf P, Graham TH, Xiao J. Pure Appl. Chem. 2007; 79: 753
- 21b Dickinson BC, Chang CJ. Nat. Chem. Biol. 2011; 7: 504
For atom-economic synthesis, see:
For step-economic synthesis, see:
For redox-economic synthesis, see:
For total syntheses of fusarisetin A, see:
For a review on progress in the synthesis of fusarisetin A, see:
For the isolation of equisetin, see:
For reviews on the Diels–Alder reaction in total synthesis, see:
For a review on intramolecular Diels–Alder reactions in total synthesis, see:
For total syntheses of equisetin, see:
For reviews on Mn(III)-promoted radical reactions, see:
For a review on the mechanisms of Mn(OAc)3-based radical reactions, see: