RSS-Feed abonnieren
DOI: 10.1055/s-0033-1340600
Enantioselective Double Aldol Reactions Involving the Sequential Activation of Silicon Tetrachloride by Chiral Phosphine Oxides
Publikationsverlauf
Received: 02. November 2013
Accepted after revision: 03. Dezember 2013
Publikationsdatum:
29. Januar 2014 (online)
Abstract
This account summarizes our recent studies on the development of phosphine oxide-catalyzed enantioselective double aldol reactions that extend hypervalent silicon chemistry by using a Lewis base catalyst. Chiral phosphine oxides repeatedly activate silicon tetrachloride and form hypervalent silicon complexes, thereby promoting sequential activation of substrates and realizing enantioselective double aldol reactions. The account describes several relevant applications of these reactions.
1 Introduction
2 General Concept of Sequential Catalysis by a Lewis Base
2.1 Lewis Base Catalysis with Chlorosilanes
2.2 Phosphine Oxides as Lewis Base Catalysts
3 Branched-Type Double Aldol Reactions
3.1 Enantioselective Branched-Type Double Aldol Reactions Catalyzed by Phosphine Oxides
3.2 Mechanism of the Branched-Type Double Aldol Reactions
3.3 Applications of the Branched-Type Double Aldol Reactions in Enantioselective Syntheses of 2,3-Dihydropyran-4-ones
4 Linear-Type Double Aldol Reactions
4.1 Enantioselective Linear-Type Double Aldol Reactions Catalyzed by Phosphine Oxides
4.2 Mechanism of the Linear-Type Double Aldol Reactions
4.3 Application of the Double Aldol Reactions to the Total Synthesis of (–)-Ericanone
5 Conclusions
-
References
- 1a Mukaiyama T, Narasaka K, Banno K. Chem. Lett. 1973; 1011
- 1b Mukaiyama T, Banno K, Narasaka K. J. Am. Chem. Soc. 1974; 96: 7503
- 2a Schetter B, Mahrwald R. Angew. Chem. Int. Ed. 2006; 45: 7506
- 2b Brodmann T, Lorenz M, Schäckel R, Simsek S, Kalesse M. Synlett 2009; 174
- 3a Tietze LF, Beifuss U. Angew. Chem. Int. Ed. Engl. 1993; 32: 131
- 3b Tietze LF. Chem. Rev. 1996; 96: 115
- 3c Parsons PJ, Penkett CS, Shell AJ. Chem. Rev. 1996; 96: 195
- 3d Nicolaou KC, Montagnon T, Snyder SA. Chem. Commun. 2003; 551
- 3e Nicolaou KC, Edmons DJ, Bulger PG. Angew. Chem. Int. Ed. 2006; 45: 7134
- 3f Pellissier H. Tetrahedron 2006; 62: 1619
- 3g Pellissier H. Tetrahedron 2006; 62: 2143
- 4a Abiko A, Liu J.-F, Buske DC, Moriyama S, Masamune S. J. Am. Chem. Soc. 1999; 121: 7168
- 4b Abiko A, Inoue T, Furuno H, Schwalbe H, Fieres C, Masamune S. J. Am. Chem. Soc. 2001; 123: 4605
- 4c Abiko A, Inoue T, Masamune S. J. Am. Chem. Soc. 2002; 124: 10759
- 4d Abiko A. Acc. Chem. Res. 2004; 37: 387
- 5a Boxer MB, Yamamoto H. J. Am. Chem. Soc. 2006; 128: 48
- 5b Akakura M, Boxer MB, Yamamoto H. ARKIVOC 2007; (x): 337
- 5c Albert BJ, Yamamoto H. Angew. Chem. Int. Ed. 2010; 49: 2747
- 6 Habib F, Cook C, Korobkov I, Murugesu M. Inorg. Chim. Acta. 2012; 380: 378
- 7a Denmark SE, Fujimori S, Pham SM. J. Org. Chem. 2005; 70: 10823
- 7b Dias LC, de Marchi AA, Ferreira MA. B, Aguilar AM. J. Org. Chem. 2008; 73: 6299
- 7c Yamaoka Y, Yamamoto H. J. Am. Chem. Soc. 2010; 132: 5354
- 8 Shimoda Y, Kotani S, Sugiura M, Nakajima M. Chem. Eur. J. 2011; 17: 7992
- 9 Shimoda Y, Kubo T, Sugiura M, Kotani S, Nakajima M. Angew. Chem. Int. Ed. 2013; 52: 3461
- 10a Chelucci G, Murineddu G, Pinna GA. Tetrahedron: Asymmetry 2004; 15: 1373
- 10b Rendler S, Oestreich M. Synthesis 2005; 1727
- 10c Orito Y, Nakajima M. Synthesis 2006; 1391
- 10d Malkov AV, Kočovský P. Eur. J. Org. Chem. 2007; 29
- 10e Denmark SE, Beutner GL. Angew. Chem. Int. Ed. 2008; 47: 1560
- 10f Benaglia M, Rossi S. Org. Biomol. Chem. 2010; 8: 3824
- 11a Smyth CP. J. Am. Chem. Soc. 1938; 60: 183
- 11b Gilkerson WR, Ezell JB. J. Am. Chem. Soc. 1967; 89: 808
- 11c Hadži D, Klofutar C, Oblak S. J. Chem. Soc. A 1968; 905
- 11d Arnett EM, Mitchell EJ, Murty TS. S. R. J. Am. Chem. Soc. 1974; 96: 3875
- 12 Short JD, Attenoux S, Berrisford DJ. Tetrahedron Lett. 1997; 38: 2351
- 13 Ogawa C, Sugiura M, Kobayashi S. Angew. Chem. Int. Ed. 2004; 43: 6491
- 14a Nakajima M, Kotani S, Ishizuka T, Hashimoto S. Tetrahedron Lett. 2005; 46: 157
- 14b Kotani S, Hashimoto S, Nakajima M. Tetrahedron 2007; 63: 3122
- 14c Kotani S, Shimoda Y, Sugiura M, Nakajima M. Tetrahedron Lett. 2009; 50: 4602
- 14d Sugiura M, Sato N, Sonoda Y, Kotani S, Nakajima M. Chem. Asian J. 2010; 5: 478
- 14e Aoki S, Kotani S, Sugiura M, Nakajima M. Chem. Commun. 2012; 48: 5524
- 14f Kotani S, Sugiura M, Nakajima M. Chem. Rec. 2013; 13: 362
- 15 For biheteroaromatic diphosphine dioxide catalyzed stereoselective direct aldol reactions, see: Rossi S, Benaglia M, Genoni A, Benincori T, Celentano G. Tetrahedron 2011; 67: 158
- 16a Brown KJ, Berry MS, Waterman KC, Lingenfelter D, Murdoch JR. J. Am. Chem. Soc. 1984; 106: 4717
- 16b Shimada T, Kurushima H, Cho Y.-H, Hayashi T. J. Org. Chem. 2001; 66: 8854
- 17 Nakajima M, Sasaki Y, Shiro M, Hashimoto S. Tetrahedron: Asymmetry 1997; 8: 341
- 18 Genoni A, Benaglia M, Rossi S, Celentano G. Chirality 2013; 25: 643
- 19 Zhang P, Han Z, Wang Z, Ding K. Angew. Chem. Int. Ed. 2013; 52: 11054
- 20 Kotani S, Sugiura M, Nakajima M unpublished results.
- 21 Ogasawara M, Kotani S, Nakajima H, Furusho H, Miyasaka M, Shimoda Y, Wu W.-Y, Sugiura M, Takahashi T, Nakajima M. Angew. Chem. Int. Ed. 2013; 52: 13798
- 22 Bennini B, Chulia A, Kaouadji M, Fondanèche P, Allais DP. Tetrahedron Lett. 2011; 52: 1597
- 23 Dias LC, Kuroishi PK, Polo EC, de Lucca EC. Jr. Tetrahedron Lett. 2013; 54: 980
For reviews on tandem reactions, see:
For reviews on Lewis base catalysis, see: