Synlett 2014; 25(5): 631-640
DOI: 10.1055/s-0033-1340600
account
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Double Aldol Reactions Involving the Sequential Activation of Silicon Tetrachloride by Chiral Phosphine Oxides

Shunsuke Kotani
a   Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
,
Masaharu Sugiura
b   Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan   Fax: +81(96)3727692   eMail: nakajima@gpo.kumamoto-u.ac.jp
,
Makoto Nakajima*
b   Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan   Fax: +81(96)3727692   eMail: nakajima@gpo.kumamoto-u.ac.jp
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 02. November 2013

Accepted after revision: 03. Dezember 2013

Publikationsdatum:
29. Januar 2014 (online)


Abstract

This account summarizes our recent studies on the development of phosphine oxide-catalyzed enantioselective double aldol reactions that extend hypervalent silicon chemistry by using a ­Lewis base catalyst. Chiral phosphine oxides repeatedly activate silicon ­tetrachloride and form hypervalent silicon complexes, thereby promoting sequential activation of substrates and realizing enantioselective double aldol reactions. The account describes several relevant applications of these reactions.

1 Introduction

2 General Concept of Sequential Catalysis by a Lewis Base

2.1 Lewis Base Catalysis with Chlorosilanes

2.2 Phosphine Oxides as Lewis Base Catalysts

3 Branched-Type Double Aldol Reactions

3.1 Enantioselective Branched-Type Double Aldol Reactions Catalyzed by Phosphine Oxides

3.2 Mechanism of the Branched-Type Double Aldol Reactions

3.3 Applications of the Branched-Type Double Aldol ­Reactions in Enantioselective Syntheses of 2,3-Dihydro­pyran-4-ones

4 Linear-Type Double Aldol Reactions

4.1 Enantioselective Linear-Type Double Aldol Reactions Catalyzed by Phosphine Oxides

4.2 Mechanism of the Linear-Type Double Aldol Reactions

4.3 Application of the Double Aldol Reactions to the Total Synthesis of (–)-Ericanone

5 Conclusions

 
  • References

    • 1a Mukaiyama T, Narasaka K, Banno K. Chem. Lett. 1973; 1011
    • 1b Mukaiyama T, Banno K, Narasaka K. J. Am. Chem. Soc. 1974; 96: 7503

      For reviews on tandem reactions, see:
    • 3a Tietze LF, Beifuss U. Angew. Chem. Int. Ed. Engl. 1993; 32: 131
    • 3b Tietze LF. Chem. Rev. 1996; 96: 115
    • 3c Parsons PJ, Penkett CS, Shell AJ. Chem. Rev. 1996; 96: 195
    • 3d Nicolaou KC, Montagnon T, Snyder SA. Chem. Commun. 2003; 551
    • 3e Nicolaou KC, Edmons DJ, Bulger PG. Angew. Chem. Int. Ed. 2006; 45: 7134
    • 3f Pellissier H. Tetrahedron 2006; 62: 1619
    • 3g Pellissier H. Tetrahedron 2006; 62: 2143
    • 4a Abiko A, Liu J.-F, Buske DC, Moriyama S, Masamune S. J. Am. Chem. Soc. 1999; 121: 7168
    • 4b Abiko A, Inoue T, Furuno H, Schwalbe H, Fieres C, Masamune S. J. Am. Chem. Soc. 2001; 123: 4605
    • 4c Abiko A, Inoue T, Masamune S. J. Am. Chem. Soc. 2002; 124: 10759
    • 4d Abiko A. Acc. Chem. Res. 2004; 37: 387
    • 5a Boxer MB, Yamamoto H. J. Am. Chem. Soc. 2006; 128: 48
    • 5b Akakura M, Boxer MB, Yamamoto H. ARKIVOC 2007; (x): 337
    • 5c Albert BJ, Yamamoto H. Angew. Chem. Int. Ed. 2010; 49: 2747
  • 6 Habib F, Cook C, Korobkov I, Murugesu M. Inorg. Chim. Acta. 2012; 380: 378
    • 7a Denmark SE, Fujimori S, Pham SM. J. Org. Chem. 2005; 70: 10823
    • 7b Dias LC, de Marchi AA, Ferreira MA. B, Aguilar AM. J. Org. Chem. 2008; 73: 6299
    • 7c Yamaoka Y, Yamamoto H. J. Am. Chem. Soc. 2010; 132: 5354
  • 8 Shimoda Y, Kotani S, Sugiura M, Nakajima M. Chem. Eur. J. 2011; 17: 7992
  • 9 Shimoda Y, Kubo T, Sugiura M, Kotani S, Nakajima M. Angew. Chem. Int. Ed. 2013; 52: 3461

    • For reviews on Lewis base catalysis, see:
    • 10a Chelucci G, Murineddu G, Pinna GA. Tetrahedron: Asymmetry 2004; 15: 1373
    • 10b Rendler S, Oestreich M. Synthesis 2005; 1727
    • 10c Orito Y, Nakajima M. Synthesis 2006; 1391
    • 10d Malkov AV, Kočovský P. Eur. J. Org. Chem. 2007; 29
    • 10e Denmark SE, Beutner GL. Angew. Chem. Int. Ed. 2008; 47: 1560
    • 10f Benaglia M, Rossi S. Org. Biomol. Chem. 2010; 8: 3824
    • 11a Smyth CP. J. Am. Chem. Soc. 1938; 60: 183
    • 11b Gilkerson WR, Ezell JB. J. Am. Chem. Soc. 1967; 89: 808
    • 11c Hadži D, Klofutar C, Oblak S. J. Chem. Soc. A 1968; 905
    • 11d Arnett EM, Mitchell EJ, Murty TS. S. R. J. Am. Chem. Soc. 1974; 96: 3875
  • 12 Short JD, Attenoux S, Berrisford DJ. Tetrahedron Lett. 1997; 38: 2351
  • 13 Ogawa C, Sugiura M, Kobayashi S. Angew. Chem. Int. Ed. 2004; 43: 6491
    • 14a Nakajima M, Kotani S, Ishizuka T, Hashimoto S. Tetrahedron Lett. 2005; 46: 157
    • 14b Kotani S, Hashimoto S, Nakajima M. Tetrahedron 2007; 63: 3122
    • 14c Kotani S, Shimoda Y, Sugiura M, Nakajima M. Tetrahedron Lett. 2009; 50: 4602
    • 14d Sugiura M, Sato N, Sonoda Y, Kotani S, Nakajima M. Chem. Asian J. 2010; 5: 478
    • 14e Aoki S, Kotani S, Sugiura M, Nakajima M. Chem. Commun. 2012; 48: 5524
    • 14f Kotani S, Sugiura M, Nakajima M. Chem. Rec. 2013; 13: 362
  • 15 For biheteroaromatic diphosphine dioxide catalyzed stereoselective direct aldol reactions, see: Rossi S, Benaglia M, Genoni A, Benincori T, Celentano G. Tetrahedron 2011; 67: 158
    • 16a Brown KJ, Berry MS, Waterman KC, Lingenfelter D, Murdoch JR. J. Am. Chem. Soc. 1984; 106: 4717
    • 16b Shimada T, Kurushima H, Cho Y.-H, Hayashi T. J. Org. Chem. 2001; 66: 8854
  • 17 Nakajima M, Sasaki Y, Shiro M, Hashimoto S. Tetrahedron: Asymmetry 1997; 8: 341
  • 18 Genoni A, Benaglia M, Rossi S, Celentano G. Chirality 2013; 25: 643
  • 19 Zhang P, Han Z, Wang Z, Ding K. Angew. Chem. Int. Ed. 2013; 52: 11054
  • 20 Kotani S, Sugiura M, Nakajima M unpublished results.
  • 21 Ogasawara M, Kotani S, Nakajima H, Furusho H, Miyasaka M, Shimoda Y, Wu W.-Y, Sugiura M, Takahashi T, Nakajima M. Angew. Chem. Int. Ed. 2013; 52: 13798
  • 22 Bennini B, Chulia A, Kaouadji M, Fondanèche P, Allais DP. Tetrahedron Lett. 2011; 52: 1597
  • 23 Dias LC, Kuroishi PK, Polo EC, de Lucca EC. Jr. Tetrahedron Lett. 2013; 54: 980