RSS-Feed abonnieren
DOI: 10.1055/s-0033-1340823
Non-Precious Metal Catalysts for C–H Borylation Enabled by Metal–Metal Cooperativity
Publikationsverlauf
Received: 07. Dezember 2013
Accepted after revision: 21. Januar 2014
Publikationsdatum:
11. März 2014 (online)
Abstract
Homogeneous catalysts for C–H functionalization typically require precious metals such as Pd, Ru, Rh, or Ir because of their facility in mediating two-electron redox mechanisms. Base metals such as Cu or Fe instead tend to undergo one-electron redox processes. By coupling together two base metal sites in a heterobimetallic catalyst design, base metal catalysts for photochemical C–H borylation were discovered. The optimal catalyst, (IPr)Cu–FeCp(CO)2, represents the first homogeneous catalyst for C–H borylation that contains no precious metals. Using metal–metal cooperativity in this way allows for base metal catalysts to replace precious metal catalysts while maintaining advantageous regioselectivity patterns. The proposed mechanism for heterobimetallic C–H borylation features bimetallic versions of classic organometallic reaction steps, serves as a guide for future catalyst designs, and opens the possibility for other precious metal transformations to be approached using metal–metal cooperativity as a design strategy.
-
References
- 1a Gutekunst WR, Baran PS. Chem. Soc. Rev. 2011; 40: 1976
- 1b Crabtree RH. J. Chem. Soc., Dalton Trans. 2001; 2437
- 2 Labinger JA. Catal. Lett. 1988; 1: 371
- 3 Labinger JA, Bercaw JE. Nature (London) 2002; 417: 507
- 4 Chirik PJ, Wieghardt K. Science 2010; 327: 794
-
5a Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
-
5b Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
-
6 Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
- 7 Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
- 8 Bullock RM. Science 2013; 342: 1054
- 9 Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG. Chem. Rev. 2010; 110: 6474
- 10a Sherry BD, Fürstner A. Acc. Chem. Res. 2008; 41: 1500
- 10b Hajipour AR, Azizi G. Green Chem. 2013; 15: 1030
- 10c Bolm C, Legros J, Le Paih J, Zani L. Chem. Rev. 2004; 104: 6217
- 11a Hennessy ET, Betley TA. Science 2013; 340: 591
- 11b Chen MS, White MC. Science 2007; 318: 783
- 11c Sun C.-L, Li B.-J, Shi Z.-J. Chem. Rev. 2011; 111: 1293
- 12a Tondreau AM, Atienza CC. H, Weller KJ, Nye SA, Lewis KM, Delis JG. P, Chirik PJ. Science 2012; 335: 567
- 12b Langer R, Diskin-Posner Y, Leitus G, Shimon LJ. W, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2011; 50: 9948
- 12c Friedfeld MR, Shevlin M, Hoyt JM, Krska SW, Tudge MT, Chirik PJ. Science 2013; 342: 1076
- 12d Zuo W, Lough AJ, Li YF, Morris RH. Science 2013; 342: 1080
- 13a Boddien A, Mellmann D, Gartner F, Jackstell R, Junge H, Dyson PJ, Laurenczy G, Ludwig R, Beller M. Science 2011; 333: 1733
- 13b Helm ML, Stewart MP, Bullock RM, DuBois MR, DuBois DL. Science 2011; 333: 863
- 13c Gunanathan C, Milstein D. Acc. Chem. Res. 2011; 44: 588
- 14a Stephan DW, Erker G. Angew. Chem. Int. Ed. 2009; 49: 46
- 14b Chernichenko K, Madarász Á, Pápai I, Nieger M, Leskelä M, Repo T. Nature Chem. 2013; 5: 718
- 14c Stephan DW, Greenberg S, Graham TW, Chase P, Hastie JJ, Geier SJ, Farrell JM, Brown CC, Heiden ZM, Welch GC, Ullrich M. Inorg. Chem. 2011; 50: 12338
- 15a Powers DC, Ritter T. Acc. Chem. Res. 2012; 45: 840
- 15b Reed SA, White MC. J. Am. Chem. Soc. 2008; 130: 3316
- 17 Tkatchouk E, Mankad NP, Benitez D, Goddard WA, Toste FD. J. Am. Chem. Soc. 2011; 133: 14293
- 18 Tang P, Furuya T, Ritter T. J. Am. Chem. Soc. 2010; 132: 12150
- 19a Schmidt JA. R, Lobkovsky EB, Coates GW. J. Am. Chem. Soc. 2005; 127: 11426
- 19b Ogo S, Ichikawa K, Kishima T, Matsumoto T, Nakai H, Kusaka K, Ohhara T. Science 2013; 339: 682
- 19c Jacobsen EN. Acc. Chem. Res. 2005; 33: 421
- 19d Uyeda C, Peters JC. J. Am. Chem. Soc. 2013; 135: 12023
- 20a Krogman JP, Foxman BM, Thomas CM. J. Am. Chem. Soc. 2011; 133: 14582
- 20b Clouston LJ, Siedschlag RB, Rudd PA, Planas N, Hu S, Miller AD, Gagliardi L, Lu CC. J. Am. Chem. Soc. 2013; 135: 13142
- 21 Jayarathne U, Mazzacano TJ, Bagherzadeh S, Mankad NP. Organometallics 2013; 32: 3986
- 22 For a review of M–Fp complexes, see: Gade LH. Angew. Chem. Int. Ed. 2000; 39: 2658
- 23 Mazzacano TJ, Mankad NP. J. Am. Chem. Soc. 2013; 135: 17258
- 24a Waltz KM, He W, Muhoro C, Hartwig JF. J. Am. Chem. Soc. 1995; 117: 11357
- 24b Waltz KM, Muhoro CN, Hartwig JF. Organometallics 1999; 18: 3383
- 25a Waltz KM, Hartwig JF. Science 1997; 277: 211
- 25b Waltz KM, Hartwig JF. J. Am. Chem. Soc. 2000; 122: 11358
- 26 Chen H, Hartwig JF. Angew. Chem. Int. Ed. 1999; 38: 3391
- 27 Iverson CN, Smith MR. III. J. Am. Chem. Soc. 1999; 121: 7696
- 28 Chen H, Schlecht S, Semple TC, Hartwig JF. Science 2000; 287: 1995
- 29 Cho J.-Y, Iverson CN, Smith MR. III. J. Am. Chem. Soc. 2000; 122: 12868
- 30 Cho J.-Y, Tse MK, Holmes D, Maleczka RE, Smith MR. III. Science 2002; 295: 305
- 31a Ishiyama T, Takagi J, Ishida K, Miyaura N, Anastasi NR, Hartwig JF. J. Am. Chem. Soc. 2002; 124: 390
- 31b Hartwig JF. Acc. Chem. Res. 2012; 45: 864
- 32 A heterogeneous Fe catalyst for C–H borylation was reported recently. See: Yan G, Jiang Y, Kuang C, Wang S, Liu H, Zhang Y, Wang J. Chem. Commun. 2010; 46: 3170
- 33a Matsunaga S, Shibasaki M. Chem. Commun. 2014; 50: 1044
- 33b Choy SW. S, Page MJ, Bhadbhade M, Messerle BA. Organometallics 2013; 32: 4726
- 33c Radlauer MR, Day MW, Agapie T. J. Am. Chem. Soc. 2013; 134: 1478
- 33d Zhou W, Napoline JW, Thomas CM. Eur. J. Inorg. Chem. 2011; 13: 2029
- 34 Mankad NP, Laitar DS, Sadighi JP. Organometallics 2004; 23: 3369
- 35 Fürstner A, Martin R, Krause H, Seidel G, Goddard R, Lehmann CW. J. Am. Chem. Soc. 2008; 130: 8773
For reviews on homogeneous Fe catalysis, see:
For Fe-catalyzed C–H functionalizations, see:
For selected references, see:
For selected references, see:
For selected references, see:
For selected references, see:
For selected references, see: