Ultraschall Med 2013; 34(6): 550-558
DOI: 10.1055/s-0033-1355758
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Postoperative Monitoring of Local and Free Flaps with Contrast-Enhanced Ultrasound (CEUS) – Analysis of 112 Patients

Postoperatives Lappenmonitoring mit Kontrastmittelultraschall (CEUS) – eine Analyse von 112 freien und lokalen Lappenplastiken
S. Geis
1   Center of Plastic-, Hand- and Reconstructive Surgery, University Hospital Regensburg
,
L. Prantl
1   Center of Plastic-, Hand- and Reconstructive Surgery, University Hospital Regensburg
,
J. Dolderer
1   Center of Plastic-, Hand- and Reconstructive Surgery, University Hospital Regensburg
,
P. Lamby
1   Center of Plastic-, Hand- and Reconstructive Surgery, University Hospital Regensburg
,
S. Mueller
2   Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg
,
E. M. Jung
3   Interdisciplinary ultrasound department, University Hospital Regensburg
› Author Affiliations
Further Information

Publication History

18 April 2013

05 August 2013

Publication Date:
14 October 2013 (online)

Abstract

Purpose: Tissue defects are a common problem in trauma surgery and oncology. Flap transplantation is often the only therapy to cover such defects. Several monitoring systems are currently available but none has made it to the clinical routine. The aim of this study was to assess perfusion disturbances of local and free flaps using contrast-enhanced ultrasound (CEUS).

Materials and Methods: 112 patients were examined during the first 72 hours after operation. CEUS was performed by one experienced examiner with a linear transducer (6 – 9 MHz, LOGIQE9/GE) after a bolus injection of 2.4 ml sulfohexa-fluoride microbubbles (SonoVue®, Bracco, Italy). Retrospective vascular perfusion was quantified by evaluating the stored DICOM cine loops using the perfusion software QONTRAST® (Bracco, Italy). Over a total penetration depth of 3 cm, every centimeter was analyzed separately. 27 complications were observed. Complete flap loss was only seen in 4 cases, while 23 flaps had to undergo minor revision and survived.

Results: Regarding the complete flap size, quantitative analysis showed significantly higher perfusion values in patients without complications compared to patients with complications: PEAK 16.5 vs. 10.0 (p = 0.001), TTP 32.6 vs. 22.2 (p = 0.001), RBV: 738.8 vs. 246.2 (p < 0.001), RBF 17.5 vs. 10.1 (p < 0.001) and MTT 43.1 vs. 29.5 (p = 0.001). Analysis of the correlation of the different flap types, age, sex and etiology of the tissue defect to the complication rate showed no statistical correlation.

Conclusion: CEUS was capable of detecting vascular disturbances after flap transplantation. TTP, RBV and MTT seem to be the most accurately parameters and are not susceptible to malfunction during measurement.

Zusammenfassung

Ziel: Weichteildefekte sind häufige Komplikationen in der Unfallchirurgie oder der Onkologie. Oftmals können derartige Defekte nur mit Hilfe eines Gewebetransfers gedeckt werden. Es existieren diverse Systeme zur Beurteilung der Lappenvitalität, aber kein Verfahren hat sich im klinischen Alltag etabliert. Ziel dieser Studie war die Detektion von vaskulären Komplikationen nach lokalem oder freiem Gewebetransfer mit Kontrastmittelultraschall (CEUS).

Material und Methoden: 112 Patienten wurden innerhalb der ersten 72 postoperativen Stunden untersucht. Nach einer Bolus Injektion (2,4 ml) des Kontrastmittels SonoVue® (Bracco, Italien) wurde die Untersuchung von einem erfahrenen Radiologen mittels eines Linearschallkopfs (6 – 9 MHz, LOGIQE9/GE) durchgerührt. Retrospektiv wurden die gespeicherten Video Sequenzen mit Hilfe der Perfusionssoftware QONTRAST® (Bracco, Italien) quantitative ausgewertet. Über eine Eindringtiefe von 3 cm wurde jeder cm separat ausgewertet. 27 Komplikationen wurden beobachtet. Ein kompletter Lappenverlust trat in 4 Fällen auf. In 23 Fällen konnten nach kleinen Revisionsreingriffen das Transplantat gerettet werden.

Ergebnisse: Bezogen auf die komplette Lappendicke wurden signifikant höhere Perfusionswerte in der Gruppe ohne Komplikationen im Vergleich zur Komplikationsgruppe beobachtet: PEAK 16,5 vs. 10,0 (p = 0,001), TTP 32,6 vs. 22,2 (p = 0,001), RBV: 738,8 vs. 246,2 (p < 0,001), RBF 17,5 vs. 10,1 (p < 0,001) und MTT 43,1 vs. 29,5 (p = 0,001). Es zeigte ich keine statistische Korrelation zwischen Alter, Geschlecht, Lappentyp, Ätiologie des Weichteildefektes und der Komplikationsrate.

Schlussfolgerung: Mit Hilfe von CEUS war es möglich Durchblutungsstörungen nach Gewebetransfer zu detektieren. TTP, RBV und MTT scheinen die exaktesten Messdaten zu liefern und scheinen im Vergleich zu den restlichen Messparametern gegenüber Messfehlern nicht so anfällig zu sein.

 
  • References

  • 1 Sauerbier M, Erdmann D, Bickert B et al. Defect coverage of the hand and forearm with a free scapula-parascapula flap. Handchirurgie, Mikrochirurgie, plastische Chirurgie: Organ der Deutschsprachigen Arbeitsgemeinschaft fur Handchirurgie: Organ der Deutschsprachigen Arbeitsgemeinschaft fur Mikrochirurgie der Peripheren Nerven und Gefasse: Organ der Vereinigung der Deutschen Plastischen Chirurgen. 2001; 3: 20-25
  • 2 Calkins MS, Burkhalter W, Reyes F. Traumatic segmental bone defects in the upper extremity. Treatment with exposed grafts of corticocancellous bone. J Bone Joint Surg Am Case Reports 1987 ; 69: 19-27
  • 3 Kremer T, Bickert B, Germann G et al. Outcome assessment after reconstruction of complex defects of the forearm and hand with osteocutaneous free flaps. Plast Reconstr Surg 2006 ; 118: 443-454 discussion 55–56
  • 4 Yildirim S, Taylan G, Eker G et al. Free flap choice for soft tissue reconstruction of the severely damaged upper extremity. J Reconstr Microsurg Case Reports 22: 599-609
  • 5 Baumgaertel F, Gotzen L. The "biological" plate osteosynthesis in multi-fragment fractures of the para-articular femur. A prospective study. Unfallchirurg 1994; 97: 78-84
  • 6 Rüdi TP, Buckley RE, CG M. AO principles of fracture management. 2nd ed. New York: Thieme; 2007
  • 7 Bodin IK, Lind MG, Arnander C. Free radial forearm flap reconstruction in surgery of the oral cavity and pharynx: surgical complications, impairment of speech and swallowing. Clin Otolaryngol Allied Sci Research Support, Non-U. S. Gov't 1994; 19: 28-34
  • 8 Schusterman MA, Kroll SS, Weber RS et al. Intraoral soft tissue reconstruction after cancer ablation: a comparison of the pectoralis major flap and the free radial forearm flap. Am J Surg Comparative Study 1991; 162: 397-399
  • 9 Brown JS, Devine JC, Magennis P et al. Factors that influence the outcome of salvage in free tissue transfer. Br J Oral Maxillofac Surg 2003; 41: 16-20
  • 10 Hidalgo DA, Jones CS. The role of emergent exploration in free-tissue transfer: a review of 150 consecutive cases. Plast Reconstr Surg 1990; 86: 492-498 ; discussion 9–501
  • 11 Khouri RK, Cooley BC, Kunselman AR et al. A prospective study of microvascular free-flap surgery and outcome. Plast Reconstr Surg. Multicenter Study 1998; 102: 711-721
  • 12 Spiegel JH, Polat JK. Microvascular flap reconstruction by otolaryngologists: prevalence, postoperative care, and monitoring techniques. Laryngoscope Review 2007; 117: 485-490
  • 13 Kroll SS, Schusterman MA, Reece GP et al. Timing of pedicle thrombosis and flap loss after free-tissue transfer. Plast Reconstr Surg Clinical Trial 1996; 98: 1230-1233
  • 14 Prantl L, Pfister K, Kubale R et al. Value of high resolution ultrasound and contrast enhanced US pulse inversion imaging for the evaluation of the vascular integrity of free-flap grafts. Clin Hemorheol Microcirc 2007; 36: 203-216
  • 15 Giunta RE, Holzbach T, Taskov C et al. Prediction of flap necrosis with laser induced indocyanine green fluorescence in a rat model. Br J Plast Surg 2005; 58: 695-701
  • 16 Christiansen JP, Leong-Poi H, Amiss LR et al. Skin perfusion assessed by contrast ultrasound predicts tissue survival in a free flap model. Ultrasound Med Biol . Research Support, Non-U. S. Gov't Research Support, U. S. Gov't, P. H.S 2002; 28: 315-320
  • 17 Kamolz LP, Schrogendorfer KF, Giovanoli P et al. Continuous free-flap monitoring with tissue-oxygen measurements: experiences of the last years. Handchirurgie, Mikrochirurgie, plastische Chirurgie: Organ der Deutschsprachigen Arbeitsgemeinschaft fur Handchirurgie: Organ der Deutschsprachigen Arbeitsgemeinschaft fur Mikrochirurgie der Peripheren Nerven und Gefasse: Organ der Vereinigung der Deutschen Plastischen Chirurgen 2002; 34: 195-200
  • 18 Muellner T, Nikolic A, Schramm W et al. New instrument that uses near-infrared spectroscopy for the monitoring of human muscle oxygenation. J Trauma 1999; 46: 1082-1084
  • 19 Payette JR, Kohlenberg E, Leonardi L et al. Assessment of skin flaps using optically based methods for measuring blood flow and oxygenation. Plast Reconstr Surg Comparative Study 2005; 115: 539-546
  • 20 Tindholdt TT, Saidian S, Tonseth KA. Microcirculatory evaluation of deep inferior epigastric artery perforator flaps with laser Doppler perfusion imaging in breast reconstruction. J Plast Surg Hand Surg Evaluation Studies 2011; 45: 143-147
  • 21 Smit JM, Zeebregts CJ, Acosta R et al. Advancements in free flap monitoring in the last decade: a critical review. Plast Reconstr Surg Research Support, Non-U. S. Gov't Review 2010; 125: 177-185
  • 22 Paprottka PM, Cyran CC, Zengel P et al. Non-invasive contrast enhanced ultrasound for quantitative assessment of tumor microcirculation. Contrast mixed mode examination vs. only contrast enhanced ultrasound examination. Clin Hemorheol Microcirc Evaluation Studies 2010; 46: 149-158
  • 23 Clevert DA, Stickel M, Minaifar N et al. Contrast-enhanced ultrasound in liver transplant: first results and potential for complications in the postoperative period. Clin Hemorheol Microcirc Clinical Trial 2009; 43: 83-94
  • 24 Lamby P, Prantl L, Schreml S et al. Improvements in high resolution ultrasound for postoperative investigation of capillary microperfusion after free tissue transfer. Clin Hemorheol Microcirc 2009; 43: 35-49
  • 25 Grishenkov D, Kari L, Brodin LK et al. In vitro contrast-enhanced ultrasound measurements of capillary microcirculation: comparison between polymer- and phospholipid-shelled microbubbles. Ultrasonics Comparative Study In Vitro Research Support, Non-U. S. Gov't 2011; 51: 40-48
  • 26 Jung EM, Prantl L, Schreyer AG et al. New perfusion imaging of tissue transplants with Contrast Harmonic Ultrasound Imaging (CHI) and Magnetic Resonance Imaging (MRI) in comparison with laser-induced Indocyanine Green (ICG) fluorescence angiography. Clin Hemorheol Microcirc 2009; 43: 19-33
  • 27 Prantl L, Schreml S, Walter M et al. Evaluation of microcirculation of free flaps of the lower leg by contrast harmonic imaging (CHI) with time intensity curve (TIC) analysis. Clin Hemorheol Microcirc 2008; 39: 343-350
  • 28 Prantl L, Schmitt S, Geis S et al. Contrast harmonic ultrasound and indocyanine-green fluorescence video angiography for evaluation of dermal and subdermal microcirculation in free parascapular flaps. Clin Hemorheol Microcirc 2008; 38: 105-118
  • 29 Tobin L, Simonsen L, Bulow J. Real-time contrast-enhanced ultrasound determination of microvascular blood volume in abdominal subcutaneous adipose tissue in man. Evidence for adipose tissue capillary recruitment. Clin Physiol Funct Imaging Comparative Study Research Support, Non-U. S. Gov't 2010; 30: 447-452
  • 30 Mulder AH, van Dijk AP, Smits P et al. Real-time contrast imaging: a new method to monitor capillary recruitment in human forearm skeletal muscle. Microcirculation Clinical Trial Research Support, N. I. H., Extramural Research Support, Non-U. S. Gov't Validation Studies 2008; 15: 203-213
  • 31 Piscaglia F, Nolsoe C, Dietrich CF et al. The EFSUMB Guidelines and Recommendations on the Clinical Practice of Contrast Enhanced Ultrasound (CEUS): update 2011 on non-hepatic applications. Ultraschall in Med Consensus Development Conference Practice Guideline Research Support, Non-U. S. Gov't 2012; 33: 33-59
  • 32 Girlich C, Schacherer D, Lamby P et al. Innovations in contrast enhanced high resolution ultrasound improve sonographic imaging of the intestine. Clin Hemorheol Microcirc 2010; 45: 207-215
  • 33 Girlich C, Jung EM, Huber E et al. Comparison between preoperative quantitative assessment of bowel wall vascularization by contrast-enhanced ultrasound and operative macroscopic findings and results of histopathological scoring in Crohn's disease. Ultraschall in Med Comparative Study 2011; 32: 154-159
  • 34 Schacherer D, Girlich C, Wiest R et al. Semiquantitative characterization of hepatocellular carcinoma (HCC)-perfusion with contrast-enhanced ultrasound and perfusion analysis. Clin Hemorheol Microcirc 2010; 44: 97-105
  • 35 Girlich C, Jung EM, Iesalnieks I et al. Quantitative assessment of bowel wall vascularisation in Crohn's disease with contrast-enhanced ultrasound and perfusion analysis. Clin Hemorheol Microcirc 2009; 43: 141-148
  • 36 Greis C. Ultrasound contrast agents as markers of vascularity and microcirculation. Clin Hemorheol Microcirc 2009; 43: 1-9
  • 37 Fellner C, Prantl L, Rennert J et al. Comparison of time-intensity-curve- (TIC-) analysis of contrast-enhanced ultrasound (CEUS) and dynamic contrast-enhanced (DCE) MRI for postoperative control of microcirculation in free flaps – First results and critical comments. Clin Hemorheol Microcirc 2011 ; 48: 187-198
  • 38 Girlich C, Schacherer D, Jung EM et al. Comparison between quantitative assessment of bowel wall vascularization by contrast-enhanced ultrasound and results of histopathological scoring in ulcerative colitis. Int J Colorectal Dis 2011;
  • 39 Stephan B, Schenk JF, Nemeh A et al. The use of antithrombotic agents in microvascular surgery. Clinical hemorheology and microcirculation 2009; 43: 51-56
  • 40 Ethical guidelines for publication in Clinical Hemorheology and Microcirculation. Clin Hemorheol Microcirc Editorial 2010; 44: 1-2
  • 41 Kroll SS, Schusterman MA, Reece GP et al. Choice of flap and incidence of free flap success. Plast Reconstr Surg 1996; 98: 459-463
  • 42 Schusterman MA, Miller MJ, Reece GP et al. A single center's experience with 308 free flaps for repair of head and neck cancer defects. Plast Reconstr Surg Research Support, Non-U. S. Gov't 1994; 93: 472-478 ; discussion 9–80
  • 43 Kind GM, Buntic RF, Buncke GM et al. The effect of an implantable Doppler probe on the salvage of microvascular tissue transplants. Plast Reconstr Surg Case Reports 1998; 101: 1268-1273 ; discussion 74–75
  • 44 Disa JJ, Cordeiro PG, Hidalgo DA. Efficacy of conventional monitoring techniques in free tissue transfer: an 11-year experience in 750 consecutive cases. Plast Reconstr Surg 1999; 104: 97-101
  • 45 Kamolz LP, Giovanoli P, Haslik W et al. Continuous free-flap monitoring with tissue-oxygen measurements: three-year experience. J Reconstr Microsurg 2002; 18: 487-491 ; discussion 92–93
  • 46 Khalid AN, Quraishi SA, Zang WA et al. Color doppler ultrasonography is a reliable predictor of free tissue transfer outcomes in head and neck reconstruction. Otolaryngol Head Neck Surg Comparative Study 2006; 134: 635-638
  • 47 Lamby P, Prantl L, Gais S et al. Evaluation of the vascular integrity of free flaps based on microcirculation imaging techniques. Clin Hemorheol Microcirc 2008; 39: 253-263
  • 48 Ricci P, Cantisani V, Ballesio L et al. Benign and malignant breast lesions: efficacy of real time contrast-enhanced ultrasound vs. magnetic resonance imaging. Ultraschall in Med 2007; 28: 57-62
  • 49 Agati L, Tonti G, Pedrizzetti G et al. Clinical application of quantitative analysis in real-time MCE. Eur J Echocardiogr Validation Studies 2004; 5: S17-S23
  • 50 Drudi FM, Cantisani V, Liberatore M et al. Role of low-mechanical index CEUS in the differentiation between low and high grade bladder carcinoma: a pilot study. Ultraschall in Med 2010; 31: 589-595
  • 51 Gudmundsson P, Shahgaldi K, Winter R et al. Parametric quantification of myocardial ischaemia using real-time perfusion adenosine stress echocardiography images, with SPECT as reference method. Clin Physiol Funct Imaging Clinical Trial Comparative Study Research Support, Non-U.S Gov't Validation Studies 2010; 30: 30-42
  • 52 Gudmundsson B, Bjarnadottir H, Kristjansdottir S et al. Quantitative assays for maedi-visna virus genetic sequences and mRNA's based on RT-PCR with real-time FRET measurements. Virology Research Support, Non-U. S. Gov't 2003 ; 307: 135-142
  • 53 Jung EM, Ross CJ, Rennert J et al. Characterization of microvascularization of liver tumor lesions with high resolution linear ultrasound and contrast enhanced ultrasound (CEUS) during surgery: First results. Clin Hemorheol Microcirc 2010; 46: 89-99
  • 54 Jung EM, Kubale R, Clevert DA et al. B-flow and B-flow with 3D and SRI postprocessing before intervention and monitoring after stenting of the internal carotid artery. Clin Hemorheol Microcirc Comparative Study 2007; 36: 35-46
  • 55 Stock K, Hann von Weyhern C, Slotta-Huspenina J et al. Microcirculation of subepithelial gastric tumors using contrast-enhanced ultrasound. Clin Hemorheol Microcirc 2010; 45: 225-232
  • 56 Clevert DA, D'Anastasi M, Jung EM. Contrast-enhanced ultrasound and microcirculation: efficiency through dynamics--current developments. Clin Hemorheol Microcirc 2013; 53: 171-186
  • 57 Suh JD, Sercarz JA, Abemayor E et al. Analysis of outcome and complications in 400 cases of microvascular head and neck reconstruction. Arch Otolaryngol Head Neck Surg Comparative Study 2004; 130: 962-966
  • 58 Raikin SM, Landsman JC, Alexander VA et al. Effect of nicotine on the rate and strength of long bone fracture healing. Clin Orthop Relat Res 1998; 353: 231-237
  • 59 Hollinger JO, Schmitt JM, Hwang K et al. Impact of nicotine on bone healing. J Biomed Mater Res 1999; 45: 294-301
  • 60 Holzle F, Loeffelbein DJ, Nolte D et al. Free flap monitoring using simultaneous non-invasive laser Doppler flowmetry and tissue spectrophotometry. J Craniomaxillofac Surg 2006; 34: 25-33
  • 61 Holzle F, Rau A, Loeffelbein DJ et al. Results of monitoring fasciocutaneous, myocutaneous, osteocutaneous and perforator flaps: 4-year experience with 166 cases. Int J Oral Maxillofac Surg Comparative Study 2010; 39: 21-28
  • 62 Blazek V, Fronek A, Schmitt HJ et al. A new opto-electronic screening system for long-term diagnosis of peripheral arterial occlusive diseases. Vasa Suppl 1991; 32: 533-566
  • 63 Nilsson GE, Tenland T, Oberg PA. Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. IEEE Trans Biomed Eng. Research Support, Non-U. S. Gov't Research Support, U. S. Gov’t, P. H.S 1980; 27: 597-604
  • 64 Heller L, Levin LS, Klitzman B. Laser Doppler flowmeter monitoring of free-tissue transfers: blood flow in normal and complicated cases. Plast Reconstr Surg 2001; 107: 1739-1745