Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(18): 2473-2478
DOI: 10.1055/s-0034-1378882
DOI: 10.1055/s-0034-1378882
synpacts
Allylic Oxide Regio-Resolution as a Tool for the Synthesis and Transfer of Carbasugars
Further Information
Publication History
Received: 23 June 2015
Accepted: 16 July 2015
Publication Date:
24 August 2015 (online)
Abstract
We report a method for the synthesis and transfer of carbasugars, a prevalent moiety throughout biology. This approach relies on the formation of diastereomeric π-allyl intermediates generated from racemic allylic oxide progenitors. Ligand directed nucleophilic attack occurs on the complexes resulting in enantioenriched regioisomers. This allowed for the generation of enantioenriched carbasugars from commodity chemicals. It is envisioned that by using the appropriate allylic oxide, ligand, and phenolic donor that any stereoarray of the carbasugars may be accessed and appended onto phenolic natural products.
-
References and Notes
- 1a Bertozzi CR, Kiessling LL. Science 2001; 291: 2357
- 1b Kobayashi Y. Glycoscience. Fraser-Reid B, Tatsuta K, Thiem J. Springer; Heidelberg: 2008: 1913-1997
- 1c Dwek RA. Chem. Rev. 1996; 96: 683
- 2a Borges de Melo E, da Silveira Gomes A, Carvalho I. Tetrahedron 2006; 62: 10277
- 2b Asano N. Cell. Mol. Life Sci. 2009; 66: 1479
- 3a List JF, Whaley JM. Kidney Int. 2011; 79: S20
- 3b Ernst B, Magnani JL. Nat. Rev. Drug Discov. 2009; 8: 661
- 4a Shing TK, Ng WL, Chan JY, Lau CB. Angew. Chem. Int. Ed. 2013; 52: 8401
- 4b Hitotsuyanagi Y, Odagiri M, Kato S, Kusano J, Hasuda T, Fukaya H, Takeya K. Eur. J. Chem. 2012; 18: 2839
- 4c Fan J.-T, Chen Y.-S, Xu W.-Y, Du L, Zeng G.-Z, Zhang Y.-M, Su J, Li Y, Tan N.-H. Tetrahedron Lett. 2010; 51: 6810
- 5 Arjona O, Gomez AM, Lopez JC, Plumet J. Chem. Rev. 2007; 107: 1919
- 6a Tripathi S, Shaikh AC, Chen C. Org. Biomol. Chem. 2011; 9: 7306
- 6b Lygo B, Swiatyj M, Trabsa H, Voyle M. Tetrahedron Lett. 1994; 35: 4197
- 6c Shing TK. M, Chen Y, Ng W.-L. Tetrahedron 2011; 67: 6001
- 6d Usami Y, Ueda Y. Synthesis 2007; 3219
- 6e Usami Y, Takaoka I, Ichikawa H, Horibe Y, Tomiyama S, Ohtsuka M, Imanishi Y, Arimoto M. J. Org. Chem. 2007; 72: 6127 ; for more examples see ref. 5
- 7a Donohoe TJ, Blades K, Helliwell M, Waring MJ, Newcombe NJ. Tetrahedron Lett. 1998; 39: 8755
- 7b Boyd DR, Sharma ND, Acaru CA, Malone JF, O’Dowd CR, Allen CC. Stevenson P. J. Org. Lett. 2010; 12: 2206
- 7c Labora M, Schapiro V, Pandolfi E. Tetrahedron: Asymmetry 2011; 22: 1705
- 8a Mehta G, Lakshminath S. Tetrahedron Lett. 2000; 41: 3509
- 8b Mehta G, Pujar SR, Ramesh SS, Islam K. Tetrahedron Lett. 2005; 46: 3373
- 9a Moschitto MJ, Vaccarello DN, Lewis CA. Angew. Chem. Int. Ed. 2015; 54: 2142
- 9b Vaccarello DN, Moschitto MJ, Lewis CA. J. Org. Chem. 2015; 80: 5252
- 10 For an in-depth review of kinetic resolution, see: Keith JM, Larrow JF, Jacobsen EN. Adv. Synth. Catal. 2001; 343: 5
- 12a Miller LC, Sarpong R. Chem. Soc. Rev. 2011; 40: 4550
- 12b Kumar RR, Kagan H. Adv. Synth. Catal. 2010; 352: 231
- 12c Webster R, Böing C, Lautens M. J. Am. Chem. Soc. 2009; 131: 444
- 13a Tsuji J, Kataoka H, Kobayashi Y. Tetrahedron Lett. 1981; 22: 2575
- 13b Trost BM, Molander GA. J. Am. Chem. Soc. 1981; 103: 5969
- 13c Trost BM, Van Vranken DL. Chem. Rev. 1996; 96: 395
- 13d Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
- 13e Trost BM, Bunt RC, Lemoine RC, Calkins TL. J. Am. Chem. Soc. 2000; 122: 5968
- 13f Trost BM, Jiang C. J. Am. Chem. Soc. 2001; 123: 12907
- 14 Trost BM, Guzner JL, Dirat O, Rhee YH. J. Am. Chem. Soc. 2002; 124: 10396
- 15 Loiseleur O, Elliott MC, von Matt P, Pfaltz A. Helv. Chim. Acta 2000; 83: 2287
- 16a Hayashi T, Yamamoto A, Ito Y. J. Chem. Soc., Chem. Commun. 1986; 1090
- 16b Daimon H, Ogawa R, Itagaki S, Shimizu I. Chem. Lett. 2004; 33: 1222
- 16c Cook GR, Sankaranarayanan S. Org. Lett. 2001; 3: 3531
- 16d Jacquet O, Legros JY, Coliboeuf M, Fiaud J.-C. Tetrahedron 2008; 64: 6530
- 17 Oxide 1 is derived from the methyl 1,3-cyclohexadiene-2-carboxylate, see: Boger DL, Patel M, Takusagawa F. J. Org. Chem. 1985; 50: 1911
- 18 Trost BM, Van Vranken DL, Bingel C. J. Am. Chem. Soc. 1992; 114: 9327
- 19a Trost BM, Toste FD. J. Am. Chem. Soc. 1999; 121: 4545
- 19b Trost BM, Machacek MR, Aponick A. Acc. Chem. Res. 2006; 39: 747
- 20a Bowles SA, Campbell MM, Sainsbury M, Davies GM. Tetrahedron 1990; 46: 3981
- 20b Usami Y, Suzuki K, Mizuki K, Ichikawa H, Arimoto M. Org. Biomol. Chem. 2009; 7: 315
- 20c Campbell MM, Kaye AD, Sainsbury M, Yavarzadeh R. Tetrahedron 1984; 40: 2461
- 21a Granberg KL, Bäckvall JE. J. Am. Chem. Soc. 1992; 114: 6858
- 21b Bäckvall JE, Granberg KL, Heumann A. Isr. J. Chem. 1991; 31: 17
- 21c Murahashi S, Taniguchi Y, Imada Y, Tanigawa Y. J. Org. Chem. 1989; 54: 3292
- 22 Racemic oxide 30 is available in seven steps, see ref. 20.
- 23 Usami Y, Ohsugi M, Mizuki K, Ichikawa H, Arimoto M. Org. Lett. 2009; 11: 2699
- 24 Isogai A, Sakuda S, Nakayama J, Watanabe S, Suzuki A. Agric. Biol. Chem. 1987; 51: 2277
- 25 Nobuji Y, Noriko C, Takashi M, Shigeru U, Kenzou H, Michiaki I. JP 06306000, 1994
- 26 Arnone A, Cardillo R, Nasini G, de Pava OV. Tetrahedron 1993; 49: 7251
- 27 The new cyclitol 38 may be related to the rancinamycin family or a desmethyl pericosine.
For examples of chiral pool synthesis from sugars, see:
For examples of syntheses from quinic acid, see:
For reviews on regiodivergent reactions, see:
For in-depth reviews of asymmetric allylic alkylations, see:
For additional examples of vinyl oxides by Trost and coworkers, see:
Oxide 21 can be prepared in seven steps: