Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(03): 327-330
DOI: 10.1055/s-0034-1378914
DOI: 10.1055/s-0034-1378914
cluster
Nickel–NHC-Catalyzed Cross-Coupling of 2-Methylsulfanylbenzofurans with Alkyl Grignard Reagents
Further Information
Publication History
Received: 11 September 2014
Accepted after revision: 02 October 2014
Publication Date:
10 November 2014 (online)
Abstract
NiCl2(PPh3)(IPr) catalyzes cross-coupling reactions of 2-methylsulfanylbenzofurans with alkyl Grignard reagents. Other nickel complexes such as NiCl2(dppe) failed to catalyze the same reaction. The alkylation is applicable to the synthesis of a couple of protein tyrosine phosphatase inhibitors, 3-(4-biphenylyl)-2-alkylbenzofurans.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1378914.
- Supporting Information
-
References and Notes
- 1a Okamura H, Miura M, Takei H. Tetrahedron Lett. 1979; 20: 43
- 1b Takei H, Miura M, Sugimura H, Okamura H. Chem. Lett. 1979; 1447
- 1c Wenkert E, Ferreira TW, Michelotti EL. J. Chem. Soc., Chem. Commun. 1979; 637
- 2a Sugimura H, Okamura H, Miura M, Yoshida M, Takei H. Nippon Kagaku Kaishi 1985; 416
- 2b Naso F. Pure Appl. Chem. 1988; 60: 79
- 2c Luh T.-Y, Ni Z.-J. Synthesis 1990; 89
-
2d Luh T.-Y. Acc. Chem. Res. 1991; 24: 257
- 2e Fiandanese V. Pure Appl. Chem. 1990; 62: 1987
- 2f Liebeskind LS, Srogl J, Savarin C, Polanco C. Pure Appl. Chem. 2002; 74: 115
- 2g Dubbaka SR, Vogel P. Angew. Chem. Int. Ed. 2005; 44: 7674
- 2h Prokopcová H, Kappe CO. Angew. Chem. Int. Ed. 2008; 47: 3674
- 2i Wang L, He W, Yu Z. Chem. Soc. Rev. 2013; 42: 599
- 2j Modha SG, Mehta VP, Van der Eycken EV. Chem. Soc. Rev. 2013; 42: 5042
- 2k Pan F, Shi Z.-J. ACS Catal. 2014; 4: 280
- 3a Hooper JF, Young RD, Pernik I, Weller AS, Willis MC. Chem. Sci. 2013; 4: 1568
- 3b Pan F, Wang H, Shen P.-X, Zhao J, Shi Z.-J. Chem. Sci. 2013; 4: 1573
- 3c Creech GS, Kwon O. Chem. Sci. 2013; 4: 2670
- 3d Higashino T, Rodríguez-Morgade MS, Osuka A, Torres T. Chem. Eur. J. 2013; 19: 10353
- 3e Liu J.-X, Liu Y.-J, Du W.-T, Dong Y, Liu J, Wang M. J. Org. Chem. 2013; 78: 7293
- 3f Quan Z.-J, Lv Y, Jing F.-Q, Jia X.-D, Huo C.-D, Wang X.-C. Adv. Synth. Catal. 2014; 356: 325
- 3g Sugahara T, Murakami K, Yorimitsu H, Osuka A. Angew. Chem. Int. Ed. 2014; 53: 9329
- 3h Otsuka S, Fujino D, Murakami K, Yorimitsu H, Osuka A. Chem. Eur. J. 2014; 20: 13146
- 4a Melzig L, Metzger A, Knochel P. Chem. Eur. J. 2011; 17: 2948
- 4b Hintermann L, Schmitz M, Chen Y. Adv. Synth. Catal. 2010; 352: 2411
- 4c Eberhart AJ, Imbriglio JE, Procter DJ. Org. Lett. 2011; 13: 5882
- 4d Ma J, Peng L, Zhang X, Zhang Z, Campbell M, Wang J. Chem. Asian J. 2010; 5: 2214
- 4e Lee K, Counceller CM, Stambuli JP. Org. Lett. 2009; 11: 1457
- 4f Ishizuka K, Seike H, Hatakeyama T, Nakamura M. J. Am. Chem. Soc. 2010; 132: 13117
- 4g Murakami K, Yorimitsu H, Osuka A. Angew. Chem. Int. Ed. 2014; 53: 7510
- 4h Murakami K, Yorimitsu H, Osuka A. Bull. Chem. Soc. Jpn. 2014; in press; DOI: 10.1246/bcsj.20140241
- 5a Bur SK, Padwa A. Chem. Rev. 2004; 104: 2401
- 5b Feldman KS. Tetrahedron 2006; 62: 5003
- 5c Smith LH. S, Coote SC, Sneddon HF, Procter DJ. Angew. Chem. Int. Ed. 2010; 49: 5832
- 5d Akai S, Kita Y. Top. Curr. Chem. 2007; 274: 35
- 5e Sulfur-Mediated Rearrangements I . Schaumann E. Springer; Berlin, Heidelberg: 2007
- 5f Yorimitsu H. J. Synth. Org. Chem. Jpn. 2013; 71: 341
- 6a Yoshida S, Yorimitsu H, Oshima K. Org. Lett. 2007; 9: 5573
- 6b Yoshida S, Yorimitsu H, Oshima K. Chem. Lett. 2008; 37: 786
- 6c Kobatake T, Yoshida S, Yorimitsu H, Oshima K. Angew. Chem. Int. Ed. 2010; 49: 2340
- 6d Murakami K, Imoto J, Matsubara H, Yoshida S, Yorimitsu H, Oshima K. Chem. Eur. J. 2013; 19: 5625
- 6e Kobatake T, Fujino D, Yoshida S, Yorimitsu H, Oshima K. J. Am. Chem. Soc. 2010; 132: 11838
- 6f Ookubo Y, Wakamiya A, Yorimitsu H, Osuka A. Chem. Eur. J. 2012; 18: 12690
- 7a Murakami K, Yorimitsu H, Osuka A. Bull. Chem. Soc. Jpn. 2013; 86: 1193
- 7b Murakami K, Yorimitsu H, Osuka A. Bull. Chem. Soc. Jpn. 2014; 87: 441
- 7c Ogura K, Tsuchihashi G. Tetrahedron Lett. 1972; 13: 1383
- 7d Ogura K, Ito Y, Tsuchihashi G. Bull. Chem. Soc. Jpn. 1979; 52: 2013
- 8 Ni–NHC catalysts are known to be more effective than Ni–phosphine catalysts for cross-coupling arylation of organosulfur compounds with aryl Grignard reagents. See ref. 4b,g,h.
- 9a Marion N, Nolan SP. Acc. Chem. Res. 2008; 41: 1440
- 9b Diez-Gonzalez S, Nolan SP. Coord. Chem. Rev. 2007; 251: 874
-
9c Fortman GC, Nolan SP. Chem. Soc. Rev. 2011; 40: 5151
- 9d Wuertz S, Glorius F. Acc. Chem. Res. 2008; 41: 1523
- 9e Weskamp T, Bohm VP. W, Herrmann WA. J. Organomet. Chem. 2000; 600: 12
-
9f Valente C, Çalimsiz S, Hoi KH, Mallik D, Sayah M, Organ MG. Angew. Chem. Int. Ed. 2012; 51: 3314
- 10a Gu S, Ni P, Chen W. Chin. J. Catal. 2010; 31: 875
- 10b Rosen BM, Quasdorf KW, Wilson DA, Zhang N, Resmerita A.-M, Garg NK, Percec V. Chem. Rev. 2011; 111: 1346
- 10c Han F.-S. Chem. Soc. Rev. 2013; 42: 5270
- 11a Matsubara K, Ueno K, Shibata Y. Organometallics 2006; 25: 3422
- 11b Tanaka S, Tanaka D, Tatsuta G, Murakami K, Tamba S, Sugie A, Mori A. Chem. Eur. J. 2013; 19: 1658
- 11c Iglesias MJ, Prieto A, Nicasio MC. Org. Lett. 2012; 14: 4318
- 12 Butylation of 1a – Representative ProcedureNiCl2(PPh3)(IPr) (11.7 mg, 0.015 mmol) was placed in a dry Schlenk tube equipped with a magnetic stir bar and a rubber septum under argon. A solution of methylsulfanylbenzofuran (1a, 120 mg, 0.50 mmol) in THF (5.0 mL) was then added. Butylmagnesium bromide (0.60 M in THF, 1.0 mL, 0.60 mmol) was then added to the mixture, and the resulting mixture was stirred for 30 min at 25 °C. The mixture was filtered through a pad of silica gel with copious washings with CH2Cl2. The filtrate was evaporated to leave a crude oil. 1H NMR analysis of the oil revealed the yield of 2a was quantitative. Silica gel column purification (n-hexane) afforded butylated benzofuran 2a (121 mg, 0.48 mmol) in 97% yield as a colorless oil.2-Butyl-3-phenylbenzo[b]furan (2a) 1H NMR (600 MHz, CDCl3): δ = 7.60 (d, 1 H, J = 7.8 Hz), 7.54–7.50 (m, 5 H), 7.40 (t, 1 H, J = 6.6 Hz), 7.30 (t, 1 H, J = 6.6 Hz), 7.25 (t, 1 H, J = 7.8 Hz), 2.90 (t, 2 H, J = 7.8 Hz), 1.81 (quint, 2 H, J = 7.2 Hz), 1.44 (sext, 2 H, J = 7.2 Hz), 0.95 (t, 3 H, J = 7.2 Hz) ppm. 13C NMR (150 MHz, CDCl3): δ = 155.46, 154.18, 133.07, 129.25, 129.06, 128.86, 127.12, 123.66, 122.68, 119.57, 116.93, 110.97, 30.68, 26.66, 22.61, 13.95 ppm. IR: 2956, 2928, 2871, 1610, 1496, 1454, 1255, 1219, 1174, 1012, 969, 769, 700 cm–1. ESI-HRMS: m/z calcd for C18H18OH [M + H]+: 281.1536; found: 281.1538.
- 13 The scope of benzofuran substrates in the alkylation seems to be narrower than that in our previous arylation at present. For instance, 3-CF3-substituted benzofuran resisted the butylation whereas it underwent smooth arylation in ref. 6f.
- 14 Malamas MS, Sredy J, Moxham C, Katz A, Xu W, McDevitt R, Adebayo FO, Sawicki DR, Seestaller L, Sullivan D, Taylor JR. J. Med. Chem. 2000; 43: 1293
Reviews:
Very recent selected examples:
Recent examples of nickel-catalyzed cross-coupling of sulfides:
Reviews:
Facile preparation of ketene dithioacetal monoxides:
Representative reviews on transition metal–carbene complexes:
For Ni–NHC complexes: