Subscribe to RSS
DOI: 10.1055/s-0034-1379230
The Applications of Palladacycles as Transition-Metal Catalysts in Organic Synthesis
Publication History
Received: 17 July 2014
Accepted after revision: 07 September 2014
Publication Date:
20 October 2014 (online)
![](https://www.thieme-connect.de/media/synlett/201419/lookinside/thumbnails/10.1055-s-0034-1379230-1.jpg)
Abstract
This account summarizes our recent work on palladacycles in organic synthesis and describes some unique catalytic properties of palladacycles as transition-metal catalysts for some useful transformations. Asymmetric induction has been realized by using chiral palladacycles as transition-metal catalysts. The influence of the C−Pd bond of palladacycles on their catalytic activity has been revealed. The reaction selectivity can be switched by appropriate choice of an sp2- or sp3-hybridized C,P-palladacycle catalyst.
1 Introduction
2 The Discovery of the Use of Palladacycles as Transition-Metal Catalysts and Their Applications in Asymmetric Catalysis
3 Switch Between Addition and Ring Opening in the Reaction of Oxabicyclic Alkenes with Terminal Alkynes by Catalysis with sp2-C,P- or sp3-C,P-Palladacycles
4 Synthesis of Polysubstituted Furans, Methylenecyclopropanes, and Polycyclic 5H-Benzo[b]azepines through Catalysis by Palladacycles
5 Conclusions
-
References
- 1a Cope AC, Siekman RW. J. Am. Chem. Soc. 1965; 87: 3272
- 1b Cope AC, Friedrich EC. J. Am. Chem. Soc. 1968; 90: 909
- 2a Parshall GW. Acc. Chem. Res. 1970; 3: 139
- 2b Omae I. Chem. Rev. 1979; 79: 287
- 2c Dyker G. Angew. Chem. Int. Ed. 1999; 38: 1698
- 2d Beletskaya IP, Cheprakov AV. J. Organomet. Chem. 2004; 689: 4055
- 2e Dupont J, Consorti CS, Spencer J. Chem. Rev. 2005; 105: 2527
- 2f Palladacycles: Synthesis, Characterization and Applications. Dupont J, Pfeffer M. Wiley-VCH; Weinheim: 2008
- 2g Alonso DA, Nájera C. Chem. Soc. Rev. 2010; 39: 2891
- 2h Chen S, Chiew JX, Pullarkat SA, Li Y, Leung P.-H. Eur. J. Inorg. Chem. 2013; 5487
- 3a Dyker G. Chem. Ber. 1997; 130: 1567
- 3b Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
- 3c Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
- 4 Herrmann WA, Brossmer C, Öfele K, Reisinger CP, Priermeier T, Beller M, Fischer H. Angew. Chem. Int. Ed. Engl. 1995; 34: 1844
- 5a Ohff M, Ohff A, van der Boom ME, Milstein D. J. Am. Chem. Soc. 1997; 119: 11687
- 5b Shaw BL. Chem. Commun. 1998; 1361
- 5c Gruber AS, Zim D, Ebeling G, Monteiro AL, Dupont J. Org. Lett. 2000; 2: 1287
- 5d Wu YJ, Hou JJ, Yun HY, Cui XL, Yuan RJ. J. Organomet. Chem. 2001; 639: 793
- 5e Botella L, Nájera C. Angew. Chem. Int. Ed. 2002; 41: 179
- 5f Svennebring A, Nilsson P, Larhed M. J. Org. Chem. 2004; 69: 3345
- 5g Liang B, Dai M, Chen J, Yang Z. J. Org. Chem. 2005; 70: 391
- 5h Biscoe MR, Fors BP, Buchwald SL. J. Am. Chem. Soc. 2008; 130: 6686
- 5i Kinzel T, Zhang Y, Buchwald SL. J. Am. Chem. Soc. 2010; 132: 14073
- 5j Yang Y, Oldenhuis NJ, Buchwald SL. Angew. Chem. Int. Ed. 2013; 52: 615
- 6 Brunel JM, Heumann A, Buono G. Angew. Chem. Int. Ed. 2000; 39: 1946
- 7a Louie J, Hartwig JF. Angew. Chem. Int. Ed. Engl. 1996; 35: 2359
- 7b Brody MS, Finn MG. Tetrahedron Lett. 1999; 40: 415
- 7c Gai XJ, Grigg R, Ramzan MI, Sridharan V, Collard S, Muir JE. Chem. Commun. 2000; 2053
- 7d Farina V. Adv. Synth. Catal. 2004; 346: 1553
- 7e Navarro O, Marion N, Oonishi Y, Kelly RA. III, Nolan SP. J. Org. Chem. 2006; 71: 685
- 8a Navarro R, Urriolabeitia EP, Cativiela C, Diaz-de-Villegas MD, Lopez MP, Alonso E. J. Mol. Catal. A: Chem. 1996; 105: 111
- 8b Hollis TK, Overman LE. Tetrahedron Lett. 1997; 38: 8837
- 8c Leung P.-H, Ng K.-H, Li YX, White AJ. P, Williams DJ. Chem. Commun. 1999; 2435
- 8d Donde Y, Overman LE. J. Am. Chem. Soc. 1999; 121: 2933
- 8e Moyano A, Rosol M, Moreno RM, Lόpez C, Maestro MA. Angew. Chem. Int. Ed. 2005; 44: 1865
- 8f Weiss ME, Fischer DF, Xin Z.-q, Jautze S, Schweizer WB, Peters R. Angew. Chem. Int. Ed. 2006; 45: 5694
- 8g Jautze S, Seiler P, Peters R. Angew. Chem. Int. Ed. 2007; 46: 1260
- 8h Nomura H, Richards CJ. Chem. Eur. J. 2007; 13: 10216
- 8i Huang Y, Pullarkat SA, Li Y, Leung P.-H. Chem. Commun. 2010; 46: 6950
- 8j Huang Y, Li Y, Leung P.-H, Hayashi T. J. Am. Chem. Soc. 2014; 136: 4865
- 9 Tenaglia A, Giordano L, Buono G. Org. Lett. 2006; 8: 4315
- 10 He P, Lu Y, Dong C.-G, Hu Q.-S. Org. Lett. 2007; 9: 343
- 11 Suzuma Y, Yamamoto T, Ohta T, Ito Y. Chem. Lett. 2007; 36: 470
- 12a Hou X.-L, Wu XO. W, Dai L.-X, Cao B.-X, Sun J. Chem. Commun. 2000; 1195
- 12b Wu H, Wu X.-W, Hou X.-L, Dai L.-X, Wang Q.-R. Chin. J. Chem. 2002; 20: 816
- 12c Hou X.-L, Dong D.-X, Yuan K. Tetrahedron: Asymmetry 2004; 15: 2189
- 12d Wu W.-Q, Peng Q, Dong D.-X, Hou X.-L, Wu Y.-D. J. Am. Chem. Soc. 2008; 130: 9717
- 12e Ding C.-H, Hou X.-L. Bull. Chem. Soc. Jpn. 2010; 83: 992
- 13 Yuan K, Zhang T.-K, Hou X.-L. J. Org. Chem. 2005; 70: 6085
- 14a Larock RC, Johnson PL. J. Chem. Soc., Chem. Commun. 1989; 1368
- 14b Namyslo JC. Synlett 1999; 114
- 14c Namyslo JC, Kaufmann DE. Synlett 1999; 804
- 14d Bexrud J, Lautens M. Org. Lett. 2010; 12: 3160
- 15 Bravo J, Cativiela C, Navarro R, Urriolabeitia EP. J. Organomet. Chem. 2002; 650: 157
- 16a Lautens M. Synlett 1993; 177
- 16b Lautens M, Fagnou K, Hiebert S. Acc. Chem. Res. 2003; 36: 48
- 16c Li L.-P, Rayabarapu DK, Nandi M, Cheng C.-H. Org. Lett. 2003; 5: 1621
- 16d Nakamura M, Matsuo K, Inoue T, Nakamura E. Org. Lett. 2003; 5: 1373
- 16e Lautens M, Hiebert S. J. Am. Chem. Soc. 2004; 126: 1437
- 16f Zhang W, Wang L.-X, Shi W.-J, Zhou Q.-L. J. Org. Chem. 2005; 70: 3734
- 16g Cho Y.-H, Tseng N.-W, Senboku H, Lautens M. Synthesis 2008; 2467
- 16h Millet R, Gremaud L, Bernardez T, Palais L, Alexakis A. Synthesis 2009; 2101
- 16i Tsui GC, Lautens M. Angew. Chem. Int. Ed. 2012; 51: 5400
- 16j Chen H, Li S, Xu J, Yang Q, Liu S, Zhou Y, Huang C, Fan B. Acta Chim. Sin. (Engl. Ed.) 2013; 71: 1243
- 16k Pan X.-J, Huang G.-B, Long Y.-H, Zuo X.-J, Xu X, Gu F.-L, Yang D.-Q. J. Org. Chem. 2014; 79: 187
- 17 Zhang T.-K, Yuan K, Hou X.-L. J. Organomet. Chem. 2007; 692: 1912
- 18 Zhang T.-K, Mo D.-L, Dai L.-X, Hou X.-L. Org. Lett. 2008; 10: 5337
- 19 Zhang T.-K, Mo D.-L, Dai L.-X, Hou X.-L. Org. Lett. 2008; 10: 3689
- 20a Kitayama K, Uozumi Y, Hayashi T. J. Chem. Soc., Chem. Commun. 1995; 15: 1533
- 20b Hayashi T. Acc. Chem. Res. 2000; 33: 354
- 21 Huang X.-J, Mo D.-L, Ding C.-H, Hou X.-L. Synlett 2011; 943
- 22 Gatineau D, Giordano L, Buono G. J. Am. Chem. Soc. 2011; 133: 10728
- 23a Herrmann WA, Brossmer C, Reisinger CP, Priermeier T, Ӧfele K, Beller M. Chem. Eur. J. 1997; 3: 357
- 23b Bedford RB. Chem. Commun. 2003; 1787
- 23c Bedford RB, Hazelwood SL, Horton PN, Hursthouse MB. Dalton Trans. 2003; 4164
- 23d Frey GD, Reisinger CP, Herdtweck E, Herrmann WA. J. Organomet. Chem. 2005; 690: 3193
- 23e Mawo RY, John DM, Wood JL, Smoliakova IP. J. Organomet. Chem. 2008; 693: 33
- 23f Yan X, Liu Y, Xi C. Appl. Organomet. Chem. 2008; 22: 341
- 24 Mo D.-L, Chen B, Ding C.-H, Dai L.-X, Ge G.-C, Hou X.-L. Organometallics 2013; 32: 4465
- 25a Hu J, Yang Q, Xu J, Huang C, Fan B, Wang J, Lin C, Bian Z, Chan AS. C. Org. Biomol. Chem. 2013; 11: 814
- 25b Rayabarapu DK, Chio C.-F, Cheng C.-H. Org. Lett. 2002; 4: 1679
- 25c Nishimura T, Tsurumaki E, Kawamoto T, Guo X.-X, Hayashi T. Org. Lett. 2008; 10: 4057
- 25d Chen H.-L, Li S.-F, Xu J.-B, Yang Q.-J, Liu S.-S, Zhou Y.-Y, Huang C, Fan B.-M. Acta Chim. Sin. (Engl. Ed.) 2013; 71: 1243
- 26 Ge G.-C, Mo D.-L, Ding C.-H, Dai L.-X, Hou X.-L. Org. Lett. 2012; 14: 5756
- 27a Hou XL, Cheung HY, Hon TY, Kwan PL, Lo TH, Tong SY, Wong HN. C. Tetrahedron 1998; 54: 1955
- 27b Brown RC. D. Angew. Chem. Int. Ed. 2005; 44: 850
- 27c Hou XL, Peng XS, Yeung KS, Wong HN. C. In: Science of Synthesis: Knowledge Update 2011/2 . Vol. 2, Chap. 9.9.5. Thieme; Stuttgart: 2011
- 28 Bigeaault J, Giordano L, Buono G. Angew. Chem. Int. Ed. 2005; 44: 4753
- 29a Chowdhury MA, Senboku H, Tokuda M. Synlett 2004; 1933
- 29b Yao T, Hong A, Sarpong R. Synthesis 2006; 3605
- 30 Zemlicka J. Adv. Antiviral Drug Des. 2007; 5: 113
- 31a Rubin M, Rubina M, Gevorgyan V. Chem. Rev. 2007; 107: 3117
- 31b Shi M, Lu J.-M, Wei Y, Shao L.-X. Acc. Chem. Res. 2012; 45: 641
- 32 Mo D.-L, Yuan T, Ding C.-H, Dai L.-X, Hou X.-L. J. Org. Chem. 2013; 78: 11470
- 33 Clavier H, Lepronier A, Bengobesse-Mintsa N, Gatineau D, Pellissier H, Giordano L, Tenaglia A, Buono G. Adv. Synth. Catal. 2013; 355: 403
- 34 Yang YW, Huang X. J. Org. Chem. 2008; 73: 4702
- 35 Cordero FM, Salvati M, Pisaneschi F, Brandi A. Eur. J. Org. Chem. 2004; 2205
- 36a Torssell KB. G. Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis: Novel Strategies in Synthesis. VCH; Weinheim: 1988
- 36b Pellissier H. Tetrahedron 2007; 63: 3235
- 37 Ge G.-C, Ding C.-H, Hou X.-L. Org. Chem. Front. 2014; 1: 382
For some examples of the use of palladacycles as catalysts in coupling reactions, see:
For some examples, see:
For some examples of Ir-, Ni-, or Rh-catalyzed reactions of oxabicyclic alkenes with terminal alkynes, see:
For a recent report on a Pd-catalyzed ring-opening reaction of oxabicyclic alkenes with terminal alkynes, see:
For some examples, see: