Synlett 2014; 25(19): 2743-2747
DOI: 10.1055/s-0034-1379484
cluster
© Georg Thieme Verlag Stuttgart · New York

Iron-Catalyzed S-Arylation of Benzothiazole with Aryl Iodides under Aqueous Medium: Facile Synthesis of Aryl(2-aminoaryl) Sulfides

Hang Wai Lee
State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong   Fax: +85223649932   Email: kf.yung@polyu.edu.hk   Email: fuk-yee.kwong@polyu.edu.hk
,
Ka Fu Yung*
State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong   Fax: +85223649932   Email: kf.yung@polyu.edu.hk   Email: fuk-yee.kwong@polyu.edu.hk
,
Fuk Yee Kwong*
State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong   Fax: +85223649932   Email: kf.yung@polyu.edu.hk   Email: fuk-yee.kwong@polyu.edu.hk
› Author Affiliations
Further Information

Publication History

Received: 13 September 2014
Accepted after revision: 28 September 2014

Publication Date:
21 October 2014 (online)


Abstract

A simple route for facile access of aryl(2-aminoaryl) sulfide was reported. With the aid of iron(III) chloride catalyst and diamine ligand, benzothiazole was efficiently S-arylated with various aryl iodides (19 examples) in water under air atmosphere. This operationally simple protocol provides aryl(2-aminoaryl) sulfides in moderate to good yields.

Supporting Information

 
  • References and Notes

  • 2 Cuny GD, Hauske JR, Hoemann MZ. WO 2000056707, 2000
    • 3a Betebenner DA, DeGoey DA, Maring CJ, Krueger AC, Iwasaki N, Rockway TW, Cooper CS, Anderson DD, Donner PL, Green BE, Kempf DJ, Liu D, McDaniel KF, Madigan DL, Motter CE, Pratt JK, Shanley JP, Tufano MD, Wagner R, Zhang R, Molla A, Mo H, Pilot-Matias TJ, Masse SV. L, Carrick RJ, He W, Lu L, Grampovnik DJ. WO 2007076034, 2007
    • 3b Betebenner DA, DeGoey DaA, Maring CJ, Krueger AC, Iwasaki N, Rockway TW, Cooper CS, Anderson DD, Donner PL, Green BE, Kempf DJ, Liu D, McDaniel KF, Madigan DL, Motter CE, Pratt JK, Shanley JP, Tufano MD, Wagner R, Zhang R, Molla A, Mo H, Pilot-Matias TJ, Masse SV. L, Carrick RJ, He W, Lu L, Grampovnik DJ. US 7910595, 2011
  • 4 Dong G, Sheng C, Wang S, Miao Z, Yao J, Zhang W. J. Med. Chem. 2010; 53: 7521
  • 6 Takeuchi H, Hirayama S, Mitani M, Koyama K. J. Chem. Soc., Perkin Trans. 1 1988; 521
    • 7a Kaczmarek L, Badowska-Roslonek K, Stolarczyk E, Szele-Jewski W. WO 2005012274, 2005
    • 7b Wang C, Ma Z, Sun X.-L, Gao Y, Guo Y.-H, Tang Y, Shi L.-P. Organometallics 2006; 25: 3259
    • 7c Sanz R, Fernández Y, Castroviejo MP, Pérez A, Fañanás FJ. J. Org. Chem. 2006; 71: 6291
    • 7d Deobald AM, de Camargo LR. S, Tabarelli G, Höner M, Rodrigues OE. D, Alves D, Braga AL. Tetrahedron Lett. 2010; 51: 3364
    • 7e Sarmiento GP, Vitale RG, Afeltra J, Moltrasio GY, Moglioni AG. Eur. J. Med. Chem. 2011; 46: 101
    • 7f Wadsworth H, Jones PA, Chau W.-F, Durrant C, Morisson-Iveson V, Passmore J, O’Shea D, Wynn D, Khan I, Black A, Avory M, Trigg W. Bioorg. Med. Chem. Lett. 2012; 22: 5795

      For reviews and book chapters focusing on Cu-catalyzed C–S coupling reactions, see:
    • 9a Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
    • 9b Pappo DE In Copper-Mediated Cross-Coupling Reactions. Evano G, Blanchard N. Wiley-VCH; Weinheim: 2014: 643
  • 11 Yu C, Jin B, Liu Z, Zhong W. Can. J. Chem. 2010; 88: 485
  • 12 Luo P.-S, Yu M, Tang R.-Y, Zhong P, Li J.-H. Tetrahedron Lett. 2009; 50: 1066
  • 15 Prasad DJ. C, Sekar G. Org. Biomol. Chem. 2013; 11: 1659
  • 17 Wallance TJ, Schriesheim A, Bartok W. J. Org. Chem. 1963; 28: 1311
  • 18 In the Sigma-Aldrich catalog 2014, the price for 2-amino-thiophenol is USD 141.50 per 100 gram, the price for benzothiazole is USD 44.30 per 100 gram.
  • 21 Lee HW, Chan AS. C, Kwong FY. Tetrahedron Lett. 2009; 50: 5868
  • 22 Using 10 mol% Cu with 2 equiv Cs2CO3 in 2.0 mL ethylene glycol catalytic system (ref. 19g), 35% GC yield was obtained for reaction of benzothiazole and 3-nitroiodobenzene.
  • 23 Betebenner DA, DeGoey DA, Maring CJ, Krueger AC, Iwasaki N, Rockway TW, Cooper CS, Anderson DD, Donner PL, Green BE, Kempf DJ, Liu D, Mcdaniel KF, Madigan DL, Motter CE, Pratt JK, Shanley JP, Tufano MD, Wagner R, Zhang R, Molla A, Mo H, Pilot-Matias TJ, Masse SV. L, Carrick RJ, He W, Lu L, Grampovnik DJ. WO 2007076034 A2 20070705, 2007
  • 24 Ishiguro S, Shimada S, Seya M, Okue M, Yagi Y, Ogane N, Saito Y. JP 10029985 A 19980203, 1998
  • 25 General Procedure for the Iron-Catalyzed S-Arylation of Benzothiazole with Aryl Iodides FeCl3 (32 mg, 20 mol%), trans-1,2-diaminocyclohexane (48 μL, 40 mol%), benzothiazole (108 μL, 1.0 mmol), (hetero)aryl iodide (1.5 mmol), NaOH (0.12 g, 3.0 mmol), and H2O (1.0 mL) were loaded into a reaction tube equipped with a septum in the presence of Teflon-coated magnetic stirrer bar on bench-top under air. The tube was then placed into a preheated oil bath (110 °C) and stirred for 24 h. After completion of reaction as judged by GC analysis, the reaction tube was allowed to cool to r.t. EtOAc was added for product extraction. The organic layer was separated, and the aqueous layer was further washed with EtOAc (3× ca. 10 mL). The organic part was concentrated under reduced pressure. The crude products were purified by flash column chromatography on silica gel (230–400 mesh) to afford the desired product (see Supporting Information for details). 2-Aminophenyl Phenyl Sulfide (Table 2, Entry 1) Yellow liquid; Rf  = 0.6 (EtOAc–hexane, 1:9). 1H NMR (400 MHz, CDCl3): δ = 4.18 (br s, 2 H), 6.81–6.85 (m, 2 H), 7.18 (t, J = 7.6 Hz, 3 H), 7.27–7.32 (m, 3 H), 7.52–7.55 (dd, J = 6.8, 1.2 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 114.39, 115.44, 118.8, 125.5, 126.5, 129.0, 131.2, 136.9, 137.5, 148.9 (see Supporting Information for details). (2-Aminophenyl) 3-Pyridyl Sulfide (Table 3, Entry 1) Brown solid; Rf  = 0.5 (EtOAc–hexane, 1:1). 1H NMR (400 MHz, CDCl3): δ = 4.39 (br s, 2 H), 6.71–6.77 (m, 2 H), 7.06–7.09 (q, J = 4.8 Hz, 1 H), 7.20–7.24 (td, J = 8.0, 1.6 Hz, 1 H), 7.27–7.29 (dt, J = 6.4, 1.6 Hz, 1 H), 7.42–7.44 (dd, J = 7.6, 1.2 Hz, 1 H), 8.30–8.32 (dd, J = 4.8, 1.6 Hz, 1 H), 8.38 (d, J = 1.6 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 112.4, 115.5, 118.8, 123.7, 131.6, 133.8, 134.2, 137.4, 146.4, 147.5, 149.0 (see Supporting Information for details).