Synlett 2015; 26(09): 1185-1190
DOI: 10.1055/s-0034-1380291
letter
© Georg Thieme Verlag Stuttgart · New York

One-Pot Synthesis of Organic Disulfides (Disulfanes) from Alkyl Halides Using Sodium Sulfide Trihydrate and Hexachloroethane or Carbon Tetrachloride in the Poly(ethylene glycol) (PEG-200)

Mohammad Abbasi*
a   Chemistry Department, Faculty of Sciences, Persian Gulf University, Bushehr 75169, Iran   eMail: abbassi@pgu.ac.ir   eMail: pgu.chem@gmail.com
,
Mohammad Reza Mohammadizadeh*
b   Chemistry Department, Faculty of Sciences, Persian Gulf University, Bushehr 75169, Iran   eMail: mrmohamadizadeh@pgu.ac.ir
,
Hekmat Moosavi
a   Chemistry Department, Faculty of Sciences, Persian Gulf University, Bushehr 75169, Iran   eMail: abbassi@pgu.ac.ir   eMail: pgu.chem@gmail.com
,
Narges Saeedi
a   Chemistry Department, Faculty of Sciences, Persian Gulf University, Bushehr 75169, Iran   eMail: abbassi@pgu.ac.ir   eMail: pgu.chem@gmail.com
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 02. November 2014

Accepted after revision: 11. Februar 2015

Publikationsdatum:
19. März 2015 (online)


Abstract

Symmetric disulfides are produced by treating their corresponding organic halides including benzylic, allylic, primary and secondary halides with Na2S·3H2O and C2Cl6 or CCl4 in PEG-200 at room temperature in high yields.

 
  • References and Notes

  • 1 Pattenden G, Shuker A. J. Chem. Soc., Perkin Trans. 1 1992; 1215
  • 3 Lee KD, Saito G, Swanson JA. Adv. Drug Delivery Rev. 2003; 55: 199
    • 5a Dong Y. Sensor. Actuat. B: Chem. 2005; 108: 622
    • 5b Shcherbakova I, Pozharskii AF. In Comprehensive Organic Functional Group Transformations II . Vol. 2. Katritzky AR, Taylor R, Ramsden C. Pergamon; Oxford: 2004: 210
    • 5c Bulmanb Page PC, Wilkes RD, Reynolds D. In Comprehensive Organic Functional Group Transformations . Vol. 2. Katritzky AR, Meth-Cohn O, Rees CW. Pergamon; Oxford: 1995: 177-187
    • 5d Sato R, Kimura T. In Science of Synthesis . Vol. 39. Kambe N, Drabowicz J, Molander GA. Thieme; Stuttgart, New York: 2007: 573-588 ; (also available online)
    • 5e Witt D, Klajn R, Barski P, Grzybowski BA. Curr. Org. Chem. 2004; 8: 1763
  • 9 Beletskaya I, Moberg C. Chem. Rev. 2006; 106: 2320
  • 15 Bandgar BP, Uppalla LS, Sadavarte VS. Tetrahedron Lett. 2001; 42: 6741
  • 18 Sinha S, Ilankumaran P, Chandrasekaran S. Tetrahedron 1999; 55: 14769
  • 19 Prabhu KR, Ramesha AR, Chandrasekaran S. J. Org. Chem. 1995; 60: 7142
  • 20 Devan N, Sridhar PR, Prabhu KR, Chandrasekaran S. J. Org. Chem. 2002; 67: 9417
  • 21 Sureshkumar D, Gunasundari T, Ganesh V, Chandrasekaran S. J. Org. Chem. 2006; 72: 2106
  • 22 Distler H. Angew. Chem. Int. Ed. 1967; 6: 544
  • 24 Milligan B, Swan JM. J. Chem. Soc. 1962; 2172
  • 25 General Procedure: Na2S·3H2O (0.291 g, 2.2 mmol) was added to a magnetically stirred solution of an alkyl halide (2 mmol) and C2Cl6 or CCl4 (1.5 mmol) in PEG-200 (2 mL) at r.t. The stirring was continued until the starting halide was completely consumed (30–150 min). Next, the reaction mixture was diluted with H2O (1 mL) and extracted with EtOAc–hexane (1:1; 4 × 2 mL). The organic extracts were combined, concentrated and purified by chromatography on silica gel. The desired disulfides were produced in excellent yields (Table 1). Benzyl Disulfide (1): white crystals; mp 68–70 °C [Lit.13c mp 69–70 °C]. 1H NMR (400 MHz, CDCl3): δ = 7.26–7.34 (m, 10 H), 3.61 (s, 4 H). 13C NMR (100 MHz, CDCl3): δ = 138.6, 130.7, 129.7, 128.7, 44.4. Anal. Calcd for C14H14S2: C, 68.25; H, 5.73; S, 26.02. Found: C, 68.12; H, 5.69; S, 26.19. Bis(2-methylbenzyl) Disulfide (4): white crystals; mp 71–73 °C. 1H NMR (400 MHz, CDCl3): δ = 7.13–7.21 (m, 8 H), 3.67 (s, 4 H), 2.38 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 135.8, 134.0, 129.5, 129.4, 126.7, 124.9, 40.5, 18.2. Anal. Calcd for C16H18S2: C, 70.02; H, 6.61; S, 23.37. Found: C, 69.94; H, 6.50; S, 23.56. Bis(3-methylbenzyl) Disulfide (5): yellow oil. 1H NMR (400 MHz, CDCl3): δ = 7.20–7.26 (m, 2 H), 7.04–7.14 (m, 6 H), 3.60 (s, 4 H), 2.36 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 137.1, 136.2, 129.1, 127.4, 127.2, 125.4, 42.3, 20.4. Anal. Calcd for C16H18S2: C, 70.02; H, 6.61; S, 23.37. Found: C, 70.16; H, 6.52; S, 23.32. Bis(4-methylbenzyl) Disulfide (6): colorless oil. 1H NMR (250 MHz, CDCl3): δ = 7.05–7.33 (m, 8 H), 3.71 (s, 4 H), 2.21 (s, 6 H). 13C NMR (62.5 MHz, CDCl3): δ = 137.6, 134.8, 129.8, 129.1, 43.1, 21.4. Anal. Calcd for C16H18S2: C, 70.02; H, 6.61; S, 23.37. Found: C, 70.05; H, 6.49; S, 23.46. Bis(2-chlorobenzyl) disulfide (8): yellow crystals; mp70–72 °C [Lit.27 mp 74 °C]. 1H NMR (400 MHz, CDCl3): δ = 7.19–730 (m, 2 H), 7.11–7.19 (m, 6 H), 3.70 (s, 4 H). 13C NMR (100 MHz, CDCl3): δ = 133.9, 133.1, 130.5, 128.8, 127.9, 125.7, 40.0. Anal. Calcd for C14H12Cl2S2: C, 53.34; H, 3.84; S, 20.34. Found: C, 53.21; H, 3.77; S, 20.42. n-Decyl Disulfide (13): colorless oil. 1H NMR (250 MHz, CDCl3): δ = 2.64 (t, J = 7.3 Hz, 4 H), 1.59–1.71 (m, 4 H), 1.21–1.35 (m, 28 H), 0.82 (t, J = 6.2 Hz, 6 H). 13C NMR (62.5 MHz, CDCl3): δ = 39.2, 31.8, 29.6, 29.5, 29.3, 29.2, 29.0, 28.5, 22.8, 14.2. Anal. Calcd for C20H42S2: C, 69.29; H, 12.21; S, 18.50. Found: C, 69.16; H, 12.26; S, 18.58. Cyclopentyl Disulfide (18): colorless oil. 1H NMR (250 MHz, CDCl3): δ = 3.39–3.45 (m, 2 H), 1.94–1.97 (m, 4 H), 1.51–1.69 (m, 12 H). 13C NMR (62.5 MHz, CDCl3): δ = 50.7, 32.9, 24.7. Anal. Calcd for C10H18S2: C, 59.35; H, 8.97; S, 31.68. Found: C, 59.51; H, 8.99; S, 31.50. Cyclohexyl Disulfide (19): colorless oil. 1H NMR (250 MHz, CDCl3): δ = 2.64–2.73 (m, 2 H), 1.99–2.06 (m, 4 H), 1.70–1.82 (m, 4 H), 1.52–1.64 (m, 2 H), 1.17–1.31 (m, 10 H). 13C NMR (62.5 MHz, CDCl3): δ = 50.1, 32.7, 26.1, 25.7. Anal. Calcd for C12H22S2: C, 62.55; H, 9.62; S, 27.83. Found: C, 62.40; H, 9.75; S, 27.85. Bis(3-hydroxypropyl)disulfide (21): colorless oil. 1H NMR (400 MHz, CDCl3): δ = 3.78 (t, J = 6.0 Hz, 4 H), 3.02–3.14 (m, 4 H), 2.82 (br s, 2 H), 2.00–2.08 (m, 4 H). 13C NMR (100 MHz, CDCl3): δ = 60.9, 35.2, 31.5. Anal. Calcd for C6H14O2S2: C, 39.53; H, 7.74; S, 35.17. Found: C, 39.72; H, 7.89; S, 34.98.
  • 26 Typical Scale-Up Procedure for the Preparation of n-Octyl Disulfide: Na2S·3H2O (4.365g, 33 mmol) was added to a magnetically stirred solution of n-octyl bromide (5.182 mL, 30 mmol) and CCl4 (2.25 mL, 22.5 mmol) in PEG-200 (30 mL) at r.t. The starting halide was completely consumed within 90 min. Then, the mixture was diluted with H2O (15 mL) and extracted with EtOAc–hexane (1:1; 4 × 15 mL). The upper layers were decanted, combined, and concentrated. The crude product was purified by silica gel chromatography using n-hexane as eluent to provide octyl disulfide in 88% yield (3.836 g) yield. n-Octyl Disulfide (12): colorless oil. 1H NMR (250 MHz, CDCl3): δ = 2.64 (t, J = 7.3 Hz, 4 H), 1.53–1.68 (m, 4 H), 1.27–1.36 (m, 20 H), 0.81 (t, J = 6.2 Hz, 6 H); 13C NMR (62.5 MHz, CDCl3): δ = 39.2, 31.7, 29.4, 29.2, 29.1, 28.6, 22.7, 14.1. Anal. Calcd for C16H34S2: C, 66.14; H, 11.79; S, 22.07. Found: C, 65.99; H, 11.81; S, 22.20.
  • 27 Srivastava SK, Rastogi R, Rajaram P, Butcher RJ, Jasinski JP. Phosphorus, Sulfur, Silicon Relat. Elem. 2010; 185: 455