RSS-Feed abonnieren
DOI: 10.1055/s-0034-1380616
Structural Revision of Uprolide G Acetate: Effective Interplay between NMR Data Analysis and Chemical Synthesis
Publikationsverlauf
Received: 13. März 2015
Accepted after revision: 27. März 2015
Publikationsdatum:
04. Mai 2015 (online)
Abstract
The molecular structure of the cytotoxic cembranolide uprolide G acetate (UGA) was proposed in 1995 and subsequently revised in 2000 on the basis that NMR data for UGA were very similar to those of a synthetic analogue that was unambiguously confirmed by X-ray diffraction analysis. Our synthetic studies of UGA suggested that the revised structure for UGA was still incorrect. Therefore, two new possible structures for UGA were proposed based on comprehensive NMR data analysis. The proposed structures were synthesized in 33 steps by exploitation of Achmatowicz rearrangement, ring-closing metathesis, and Sharpless asymmetric dihydroxylation as the key steps. Their analysis led to the identification of the correct structure for UGA. The success of structural revision of UGA illustrated well the importance of the interplay between NMR data analysis and chemical synthesis.
-
References and Notes
- 1a Butler MS. Nat. Prod. Rep. 2005; 22: 162
- 1b Baker DD, Chu M, Oza U, Rajgarhia V. Nat. Prod. Rep. 2007; 24: 1225
- 1c Ganesan A. Curr. Opin. Chem. Biol. 2008; 12: 306
- 1d Harvey AL. Drug Discov. Today 2008; 13: 894
- 1e Morris JC, Phillips AJ. Nat. Prod. Rep. 2011; 28: 269
- 1f Newman DJ, Cragg GM. J. Nat. Prod. 2012; 75: 311
- 2a Nicolaou KC, Vourloumis D, Winssinger N, Baran PS. Angew. Chem. Int. Ed. 2000; 39: 44
- 2b Nicolaou KC, Sorensen EJ. Classics in Total Synthesis: Targets, Strategies, Methods . Wiley-VCH; Weinheim: 1996
- 2c Nicolaou KC, Synder SA. Classics in Total Synthesis II: More Targets, Strategies, Methods. Wiley-VCH; Weinheim: 2003
- 3a Murata M, Yasumoto T. Nat. Prod. Rep. 2000; 17: 293
- 3b Bifulco G, Dambruoso P, Gomez-Paloma L, Riccio R. Chem. Rev. 2007; 107: 3744
- 3c Menche D. Nat. Prod. Rep. 2008; 25: 905
- 4a Nicolaou KC, Snyder SA. Angew. Chem. Int. Ed. 2005; 44: 1012
- 4b Maier ME. Nat. Prod. Rep. 2009; 26: 1105
- 4c Suyama TL, Gerwick WH, McPhail KL. Bioorg. Med. Chem. 2011; 19: 6675
- 4d Song Y, Lee KH, Lin Z, Tong R. J. Org. Chem. 2014; 79: 1493
- 4e Terayama N, Yasui E, Mizukami M, Miyashita M, Nagumo S. Org. Lett. 2014; 16: 2794
- 4f Fuwa H, Muto T, Sekine H, Sasaki M. Chem. Eur. J. 2014; 20: 1848
- 4g Lei H, Yan J, Yu J, Liu Y, Wang Z, Xu Z, Ye T. Angew. Chem. Int. Ed. 2014; 53: 6533
- 4h Huwyler N, Carreira EM. Angew. Chem. Int. Ed. 2012; 51: 13066
- 4i Jeker OF, Carreira EM. Angew. Chem. Int. Ed. 2012; 51: 3474
- 5 Zhu L, Liu Y, Ma R, Tong R. Angew. Chem. Int. Ed. 2015, 54: 627
- 6 Rodríguez AD, Soto JJ, Pina IC. J. Nat. Prod. 1995; 58: 1209
- 7 Marshall JA, Griot CA, Chobanian HR, Myers WH. Org. Lett. 2010; 12: 4328
- 8a Li J, Cisar JS, Zhou C.-Y, Vera B, Williams H, Rodríguez AD, Cravatt BF, Romo D. Nature Chem. 2013; 5: 510
- 8b Rodríguez AD, Piña IC, Acosta AL, Ramírez C, Soto JJ. J. Org. Chem. 2001; 66: 648
- 8c Tius MA. Chem. Rev. 1988; 88: 719
- 8d Marshall JA, Crooks SL, DeHoff BS. J. Org. Chem. 1988; 53: 1616
- 8e Taber DF, Song Y. J. Org. Chem. 1997; 62: 6603
- 9 Rodríguez AD, Soto JJ, Barnes CL. J. Org. Chem. 2000; 65: 7700
- 10a Fujii A, Hashiguchi S, Uematsu N, Ikariya T, Noyori R. J. Am. Chem. Soc. 1996; 118: 2521
- 10b Ferrie L, Reymond S, Capdevielle P, Cossy J. Org. Lett. 2007; 9: 2461
- 11a Achmatowicz Jr. O, Bukowski P, Szechner B, Zwierzchowska Z, Zamojski A. Tetrahedron 1971; 27: 1973
- 11b Lipshutz BH. Chem. Rev. 1986; 86: 795
- 11c Harris JM, Li M, Scott JG, O’Doherty GA. Strategy and Tactics in Organic Synthesis . Harmata M. Elsevier; London: 2004: 221
- 12a Lewis MD, Cha JK, Kishi Y. J. Am. Chem. Soc. 1982; 104: 4976
- 12b For the origin of the high diastereoselectivity in this type reduction, see: Um JM, Houk KN, Phillips AJ. Org. Lett. 2008; 10: 3769
- 13 Imamoto T, Takiyama N, Nakamura K, Hatajima T, Kamiya Y. J. Am. Chem. Soc. 1989; 111: 4392
- 14 For a leading review, see: Seco JM, Quiñoá E, Riguera R. Chem. Rev. 2004; 104: 17
- 15 Abiko A, Liu J.-F, Masamune S. J. Am. Chem. Soc. 1997; 119: 2586
- 16a Johnson WS, Werthemann L, Bartlett WR, Brocksom TJ, Li T.-T, Faulkner DJ, Petersen MR. J. Am. Chem. Soc. 1970; 92: 741
- 16b Fernandes RA, Chowdhury AK, Kattanguru P. Eur. J. Org. Chem. 2014; 2833
- 16c Castro AM. M. Chem. Rev. 2004; 104: 2939
-
17a Jacobsen EN, Marko I, Mungall WS, Schroeder G, Sharpless KB. J. Am. Chem. Soc. 1988; 110: 1968
-
17b Kolb HC, VanNieuwenhze MS, Sharpless KB. Chem. Rev. 1994; 94: 2483
- 18a Grubbs RH. Tetrahedron 2004; 60: 7117
- 18b Grubbs RH. Angew. Chem. Int. Ed. 2006; 45: 3760
- 19a Still WC, Galynker I. Tetrahedron 1981; 37: 3981
- 19b Neeland E, Ounsworth JP, Sims RJ, Weiler L. Tetrahedron Lett. 1987; 28: 35
- 19c Fukazawa Y, Usui S, Uchio Y. Tetrahedron Lett. 1986; 27: 1825
- 20a Lambert JB, Shurvell HF, Lightner DA, Cooks RG. The Chemical Shift In Organic Structural Spectroscopy . Prentic-Hall; New Jersey: 1998: 49
- 20b Silverstein RM, Webster FX, Kiemle DJ. Carbon-13 NMR Spectrometry In Spectrometric Identification of Organic Compounds . 7th ed. John Wiley and Sons; New Jersey: 2005: 204
For selected reviews, see:
For recent reviews covering modern methods of structure elucidation, see:
For reviews covering incorrectly assigned structures of natural products and their structural revisions by total synthesis, see:
For selected recent examples, see:
For selected total syntheses of other less complex cembranolides, see:
For leading reviews on Achmatowicz rearrangement, see:
For selected reviews, see:
For recent reviews on RCM, see: