Klin Monbl Augenheilkd 2014; 231(12): 1203-1214
DOI: 10.1055/s-0034-1382964
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Fettstoffwechselstörungen und Glaukom

Dyslipidaemia and Glaucoma
A. G. Jünemann
1   Augenklinik, Universitätsklinikum Erlangen
,
C. Huchzermeyer
1   Augenklinik, Universitätsklinikum Erlangen
,
R. Rejdak
2   Tadeusz Krwawicz Chair of Ophthalmology, Medical University, Chmielna, Poland
,
B. Hohberger
1   Augenklinik, Universitätsklinikum Erlangen
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingereicht 11. Juni 2014

akzeptiert 08. Juli 2014

Publikationsdatum:
01. September 2014 (online)

Zusammenfassung

In der multifaktoriellen Pathogenese der glaukomatösen Optikusatrophie spielen endotheliale Dysfunktion und vaskuläre Dysregulation eine Rolle. Dyslipidämie als Risikofaktor für die endotheliale Dysfunktion ist sowohl mit der Glaukomerkrankung als auch mit kardiovaskulärer Morbidität und Mortalität assoziiert. Ein möglicher Mechanismus ist bei gegebener genetischer Disposition die additive Wirkung verschiedener Risikofaktoren für die endotheliale Dysfunktion, wie Dyslipidämie, Rauchen, arterielle Hypertonie, Diabetes und Hyperhomozysteinämie. In dieser Übersichtsarbeit wird die aktuelle Datenlage zur Assoziation zwischen Dyslipidämie und Glaukomerkrankung dargelegt sowie eine mögliche Rolle der Dyslipidämie in der Pathogenese und Progression der Glaukomerkrankung erläutert. Die Bedeutung exogener modifizierbarer Risikofaktoren für die Prävention und Therapie der Glaukomerkrankung sowie ihrer Neutralisierung durch eine Änderung des Lebensstils, wie Gewichtsreduktion, Modifizierungen der Ernährung und gesteigerte körperliche Aktivität, wird diskutiert.

Abstract

Endothelial dysfunction and vascular dysregulation play a role in the multifactorial pathogenesis of glaucomatous optic nerve atrophy. Dyslipidaemia as a risk factor for endothelial dysfunction is associated with glaucoma and cardiovascular morbidity and mortality. In additional to a genetic disposition, a potential mechanism for the pathogenesis of endothelial dysfunction could be an additive effect of several risk factors, like dyslipidaemia, smoking, arterial hypertension, diabetes and hyperhomocysteinaemia. This paper reviews the literature concerning the association between dyslipidaemia and glaucomatous disease and explains the possible role of dyslipidaemia for the pathogenesis and progression of glaucoma. The role of exogeneous modifiable risk factors for prevention and therapy of glaucoma and their neutralisation by changing life style like weight reduction, modifications of nutrition and physical activity, are discussed.

 
  • Literatur

  • 1 Kass MA, Heuer DK, Higginbotham EJ et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002; 120: 701-713
  • 2 Leske MC, Heijl A, Hyman L et al. Early Manifest Glaucoma Trial: design and baseline data. Opthtalmology 1999; 106: 2144-2153
  • 3 Heijl A, Leske MC, Bengtsson B et al. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 2002; 120: 1268-1279
  • 4 Musch DC, Gillespie BW, Lichter PR et al. Visual field progression in the Collaborative Initial Glaucoma Treatment Study the impact of treatment and other baseline factors. Ophthalmology 2009; 116: 200-207
  • 5 Collaborative Normal-Tension Glaucoma Study Group. The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am J Ophthalmol 1998; 126: 498-505
  • 6 The Advanced Glaucoma Intervention Study (AGIS) 4. Comparison of treatment outcomes within race. Seven-year results. Ophthalmology 1998; 105: 1146-1164
  • 7 The Advanced Glaucoma Intervention Study (AGIS) 7. The relationship between control of intraocular pressure and visual field deterioration. The AGIS Investigators. Am J Ophthalmol 2000; 130: 429-440
  • 8 Cockburn DM. Does reduction of intraocular pressure (IOP) prevent visual field loss in glaucoma?. Am J Optom Physiol Opt 1983; 60: 705-711
  • 9 Chauhan BC, Drance SM. The relationship between intraocular pressure and visual field progression in glaucoma. Graefes Arch Clin Exp Ophthalmol 1992; 230: 521-526
  • 10 Leske MC, Heijl A, Hyman L et al. Predictors of long-term progression in the early manifest glaucoma trail. Ophthalmology 2007; 114: 1965-1972
  • 11 Chauhan BC. Endothelin and its potential role in glaucoma. Can J Ophthalmol 2008; 43: 356-360
  • 12 Chung HS, Harris A, Kagemann L et al. Peripapillary retinal blood flow in normal tension glaucoma. Br J Ophthalmol 1999; 83: 466-469
  • 13 Michelson G, Schmauss B, Langhans MJ et al. Perfusion of the juxtapapillary retina and the neuroretinal rim area in primary open angel glaucoma. J Glaucoma 1996; 5: 91-98
  • 14 Yin ZQ, Millar TJ, Beaumont P et al. Widespread choroidal insufficiency in primary open-angle glaucoma. J Glaucoma 1997; 6: 23-32
  • 15 Harris A, Sergott RC, Spaeth GL et al. Color Doppler analysis of ocular vessel blood velocity in normal-tension glaucoma. Am J Ophthalmol 1994; 118: 642-649
  • 16 Rojanapongpun P, Drance SM, Morrison BJ. Ophthalmic artery flow velocity in glaucomatous and normal subjects. Br J Ophthalmol 1993; 77: 25-29
  • 17 Kornzweig AL, Eliasoph I, Feldstein M. Selective atrophy of the radial peripapillary capillaries in chronic glaucoma. Arch Ophthalmol 1968; 80: 696-702
  • 18 Gottanka J, Kuhlmann A, Scholz M et al. Pathophysiologic changes in the optic nerves of eyes with primary open angel and pseudoexfoliation glaucoma. Invest Ophthalmol Vis Sci 2005; 46: 4170-4181
  • 19 Pache M, Flammer J. A sick eye in a sick body? systemic findings in patients with primary open-angle glaucoma. Surv Ophthalmol 2006; 51: 179-212
  • 20 Dierkes J, Westphal S, Luley C. The effect of fibrates and other lipid-lowering drugs on plasma homocysteine levels. Expert Opin Drug Saf 2004; 3: 101-111
  • 21 Ding J, Wong TY. Current epidemiology of diabetic retinopathy and diabetic macular edema. Curr Diab Rep 2012; 12: 346-354
  • 22 Lim LS, Wong TY. Lipids and diabetic retinopathy. Expert Opin Biol Ther 2012; 12: 93-105
  • 23 Tezel G. The immune response in glaucoma: a perspective on the roles of oxidative stress. Exp Eye Res 2011; 93: 178-186
  • 24 Cherecheanu AP, Garhofer G, Schmidl D et al. Ocular perfusion pressure and ocular blood flow in glaucoma. Curr Opin Pharmacol 2013; 13: 36-42
  • 25 Resch H, Garhofer G, Fuchsjäger-Mayrl G et al. Endothelial dysfunction in glaucoma. Acta Ophthalmol 2009; 87: 4-12
  • 26 Münzel T. Endotheliale Dysfunktion: Pathophysiologie, Diagnostik und prognostische Bedeutung. Dtsch Med Wochenschr 2008; 133: 2465-2470
  • 27 Prasad H, Ryan DA, Celzo MF et al. Metabolic syndrome: definition and therapeutic implications. Postgrad Med 2012; 124: 21-30
  • 28 Tan GS, Wong TY, Fong CW et al. Diabetes, metabolic abnormalities, and glaucoma. Arch Ophthalmol 2009; 127: 1354-1361
  • 29 Cohen JD, Cziraky MJ, Cai Q et al. 30-year trends in serum lipids among United States adults: results from the National Health and Nutrition Examination Surveys II, III, and 1999–2006. Am J Cardiol 2010; 106: 969-975
  • 30 Third Report of the National Cholesterol Education Program (NCEP). Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002; 106: 3143-3421
  • 31 Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: Findings from the third NationalHealth and Nutrition Examination Survey. JAMA 2002; 287: 356-359
  • 32 Steinberger J, Daniels SR, Eckel RH et al. Progress and challenges in metabolic syndrome in children and adolescents: a scientific statement from the American Heart Association Atherosclerosis, Hypertension, and Obesity in the Young Committee of the Council on Cardiovascular Disease in the Young; Council on Cardiovascular Nursing; and Council on Nutrition, Physical Activity, and Metabolism. Circulation 2009; 119: 628-647
  • 33 Alberti KG, Zimmet P, Shaw J. Metabolic Syndrome- a new world definition. A consensus statement from the International Diabetes Federation. Diabet Med 2006; 23: 469-480
  • 34 Carr MC, Brunzell JD. Abdominal obesity and dyslipidemia in the metabolic syndrome: importance of type 2 diabetes and familial combined hyperlipidemia in coronary artery disease risk. J Clin Endocrinol Metabol 2004; 89: 2601-2607
  • 35 Manjunath CN, Rawal JR, Irani PM et al. Atherogenic dyslipidemia. Indian J Endocrinol Metab 2013; 17: 969-976
  • 36 Frohlich J, Al-Sarraf A. Cardiovascular risk and atherosclerosis prevention. Cardiovasc Pathol 2013; 22: 16-18
  • 37 Contois JH, Warnick GR, Sniderman AD. Reliability of low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B measurement. J Clin Lipidol 2011; 5: 264-272
  • 38 Frank AT, Zhao B, Jose PO et al. Racial/ethnic differences in dyslipidemia patterns. Circulation 2014; 129: 570-579
  • 39 Huxley RR, Barzi F, Lam TH et al. Isolated low levels of highdensity lipoprotein cholesterol are associated with an increased risk of coronary heart disease: an individual participant data meta-analysis of 23 studies in the Asia-Pacific region. Circulation 2011; 124: 2056-2064
  • 40 Rutherford JN, McDade TW, Feranil AB et al. High prevalence of low HDL-c in the Philippines compared to the US: population differences in associations with diet and BMI. Asia Pac J Clin Nutr 2010; 19: 57-67
  • 41 Misra A, Khurana L. Obesity-related non-communicable diseases: South Asians vs. White Caucasians. Int J Obes (Lond) 2011; 35: 167-187
  • 42 Karthikeyan G, Teo KK, Islam S et al. Lipid profile, plasma apolipoproteins, and risk of a first myocardial infarction among Asians: an analysis from the INTERHEART Study. J Am Coll Cardiol 2009; 53: 244-253
  • 43 Klatsky AL, Tekawa I. Health problems and hospitalizations among Asian-American ethnic groups. Ethn Dis 2005; 15: 753-760
  • 44 Holland AT, Wong EC, Lauderdale DS et al. Spectrum of cardiovascular diseases in Asian-American racial/ethnic subgroups. Ann Epidemiol 2011; 21: 608-614
  • 45 Goff jr. DC, Bertoni AG, Kramer H et al. Dyslipidemia prevalence, treatment, and control in the Multi-Ethnic Study of Atherosclerosis (MESA): gender, ethnicity, and coronary artery calcium. Circulation 2006; 113: 647-656
  • 46 Kirillova OO. Modern concepts of gene polymorphisms, which regulate lipid metabolism. Vopr Pitan 2012; 81: 48-52
  • 47 Zhou G, Liu B. Single nucleotide polymorphisms of metabolic syndrome – related genes in primary open angle glaucoma. Int J Ophthalmol 2010; 3: 36-42
  • 48 Palaniappan LP, Araneta MR, Assimes TL et al. Call to action: cardiovascular disease in Asian Americans: a science advisory from the American Heart Association. Circulation 2010; 122: 1242-1252
  • 49 Blazek A, Rutsky J, Osei K et al. Exercise-mediated changes in high-density lipoprotein: Impact on form and function. Am Heart J 2013; 166: 392-400
  • 50 Winder AF, Paterson G, Miller SJ. Biochemical abnormalities associated with ocular hypertension and low tension glaucoma. Trans Ophthalmol Soc UK 1974; 94: 518-524
  • 51 Winder AF. Circulating lipoprotein and blood glucose levels in association with low-tension and chronic simple glaucoma. Br J Ophthalmol 1977; 61: 641-645
  • 52 Tanaka C, Yamazaki Y, Yokoyama H. Study on the progression of visual field defect and clinical factors in normal-tension glaucoma. Jpn J Ophthalmol 2001; 45: 117
  • 53 Jaen-Diaz JI, Sanz Alcolea I, López De Castro F et al. Glaucoma and ocular hypertension in primary care. Aten Primaria 2001; 28: 23-30
  • 54 Chisholm IA, Stead S. Plasma lipid patterns in patients with suspected glaucoma. Can J Ophthalmol 1988; 23: 164-167
  • 55 Wang D, Huang Y, Huang C et al. Association analysis of cigarette smoking with onset of primary open-angle glaucoma and glaucoma-related biometric parameters. BMC Ophthalmol 2012; 12: 59
  • 56 Newman-Casey PA, Talwar N, Nan B et al. The relationship between components of metabolic syndrome and open-angle glaucoma. Ophthalmology 2011; 118: 1318-1326
  • 57 Jonas JB. Effect of statin drugs and aspirin on open-angle glaucoma progression. Clinical and Experimental Ophthalmology 2007; 35: 503
  • 58 Wolfs RC, Borger PH, Ramrattan RS et al. Changing views on open-angle glaucoma: definitions and prevalences: the Rotterdam Study. Invest Ophthalmol Vis Sci 2000; 41: 3309-3321
  • 59 Lee DJ, Gomez-Marin O, Lam BL et al. Glaucoma and survival: the National Health Interview Survey 1986–1994. Ophthalmology 2003; 110: 1476-1483
  • 60 Mitchell P, Smith W, Attebo K et al. Prevalence of open-angle glaucoma in Australia. The Blue Mountains Eye Study. Ophthalmology 1996; 103: 1661-1669
  • 61 Wensor MD, McCarty CA, Stanislavsky YL et al. The prevalence of glaucoma in the Melbourne Visual Impairment Project. Ophthalmology 1998; 105: 733-739
  • 62 Lin HC, Chien CW, Hu CC et al. Comparison of comorbid conditions between open-angle glaucoma patients and control cohort. Ophthalmology 2010; 117: 2088-2095
  • 63 Wise LA, Rosenberg L, Radin RG et al. A prospective study of diabetes, lifestyle factors, and glaucoma among African-American women. Ann Epidemiol 2011; 21: 430-439
  • 64 Mitchell P, Lee AJ, Wang JJ et al. Intraocular pressure over the clinical range of blood pressure: blue mountains eye study findings. Am J Ophthalmol 2005; 140: 131-132
  • 65 Klein BE, Klein R, Knudtson MD. Intraocular pressure and systemic blood pressure: longitudinal perspective: the Beaver Dam Eye Study. Br J Ophthalmol 2005; 89: 284-287
  • 66 Xu L, Wang H, Wang Y et al. Intraocular pressure correlated with arterial blood pressure. The Beijing Eye Study. Am J Ophthalmol 2007; 144: 461-462
  • 67 Memarzadeh F, Ying-Lai M, Azen SP et al. Los Angeles Latino Eye Study Group. Associations with intraocular pressure in Latinos: the Los Angeles Latino Eye Study. Am J Ophthalmol 2008; 146: 69-76
  • 68 Oh SW, Lee S, Park C et al. Elevated intraocular pressure is assozcaited with insulin resistance and metabolic syndrome. Diab Metabol Res Rev 2005; 21: 434-440
  • 69 Stewart WC, Dubiner HB, Mundorf TK et al. Effects of carteolol and timolol on plasma lipid profiles in older women with ocular hypertension or primary open-angle glaucoma. Am J Ophthalmol 1999; 127: 142-147
  • 70 Lee YW, Min WK, Chun S et al. The association between intraocular pressure and predictors of coronary heart disease risk in Koreans. J Korean Med Sci 2008; 23: 31-34
  • 71 Imai K, Hamaguchi M, Mori K et al. Metabolic syndrome as a risk factor for high-ocular tension. Int J Obes (Lond) 2010; 34: 1209-1217
  • 72 Klein BE, Klein R. Intraocular pressure and cardiovascular risk variables. Arch Ophthalmol 1981; 99: 837-839
  • 73 Wu SY, Leske MC. Associations with intraocular pressure in the Barbados Eye Study. The Barbados Eye Study Group. Arch Ophthalmol 1997; 115: 1572-1576
  • 74 Bonomi L, Marchini G, Marraffa M et al. Vascular risk factors for primary open angle glaucoma. The Egna-Neumarkt Study. Ophthalmology 2000; 107: 1287-1293
  • 75 Leske MC, Podgor MJ. Intraocular pressure, cardiovascular risk variables, and visual field defects. Am J Epidemiol 1983; 118: 280-287
  • 76 Dielemans I, Vingerling JR, Algra D et al. Primary open-angle glaucoma, intraocular pressure, and systemic blood pressure in the general elderly population. Ophthalmology 1995; 102: 54-60
  • 77 McLeod SD, West SK, Quigley HA et al. A longitudinal study of the relationship between intraocular and blood pressures. Invest Ophthalmol Vis Sci 1990; 31: 2361-2366
  • 78 Leske MC, Warheit-Roberts L, Wu SY. Open-angle glaucoma and ocular hypertension: the Long Island Glaucoma Case-Control Study. Ophthalmic Epidemiol 1996; 3: 85-96
  • 79 Mitchell P, Smith W, Chey T et al. Open-angle glaucoma and diabetes: the Blue Mountains eye study, Australia. Ophthalmology 1997; 104: 712-718
  • 80 Klein BE, Klein R, Jensen SC. Open-angle glaucoma and olderonset diabetes. The Beaver Dam Eye Study. Ophthalmology 1994; 101: 1173-1177
  • 81 Tielsch JM, Katz J, Quigley HA et al. Diabetes, intraocular pressure, and primary open-angle glaucoma in the Baltimore Eye Survey. Ophthalmology 1995; 102: 48-53
  • 82 Dielemans I, de Jong PT, Stolk R et al. Primary open-angle glaucoma, intraocular pressure, and diabetes mellitus in the general elderly population: the Rotterdam Study. Ophthalmology 1996; 103: 1271-1275
  • 83 Shiose Y, Kawase Y. A new approach to stratified normal intraocular pressure in a general population. Am J Ophthalmol 1986; 101: 714-721
  • 84 Klein BE, Klein R, Linton KL. Intraocular pressure in an American community: the Beaver Dam Eye Study. Invest Ophthalmol Vis Sci 1992; 33: 2224-2228
  • 85 Shiose S. Intraocular pressure: new perspectives. Surv Ophthalmol 1990; 34: 413-435
  • 86 Mori K, Ando F, Nomura H et al. Relationship between intraocular pressure and obesity in Japan. Int J Epidemiol 2000; 29: 661-666
  • 87 Lee JS, Lee SH, Oum BS et al. Relationship between intraocular pressure and systemic health parameters in a Korean population. Clin Experiment Ophthalmol 2002; 30: 237-241
  • 88 Cheung N, Wong TY. Obesity and eye diseases. Surv Ophthalmol 2007; 52: 180-195
  • 89 dos Santos MG, Makk S, Berghold A et al. Intraocular pressure difference in Goldmann applanation tonometry versus Perkins hand-held applanation tonometry in overweight patients. Ophthalmology 1998; 105: 2260-2263
  • 90 Gasser P, Stumpfig D, Schotzau A et al. Bodymass index in glaucoma. J Glaucoma 1999; 8: 8-11
  • 91 Reaven GM. Role of insulin resistance in human disease. Banting lecture 1988. Diabetes 1998; 37: 1595-1607
  • 92 Shiose Y. The aging effect on intraocular presure in an apparently normal population. Arch Ophthalmol 1984; 206: 33-41
  • 93 Mitchell P, Leung H, Wang JJ et al. Retinal vessel diameter and open-angle glaucoma: the Blue Mountains Eye Study. Ophthalmology 2005; 112: 245-250
  • 94 Wang S, Xu L, Wang Y et al. Retinal vessel diameter in normal and glaucomatous eyes: The Beijing Eye Study. Clin Experiment Ophthalmol 2007; 35: 800-807
  • 95 Amerasinghe N, Aung T, Cheung N et al. Evidence of retinal vascular narrowing in glaucomatous eyes in an Asian population. Invest Ophthalmol Vis Sci 2008; 49: 5397-5402
  • 96 Leung H, Wang JJ, Rochtchina E et al. Dyslipidaemia and microvascular disease in the retina. Eye 2005; 19: 861-868
  • 97 Oettli A, Gugleta K, Kochkorov A et al. Rigidity of retinal vessel in untreated eyes of normal tension primary open-angle glaucoma patients. J Glaucoma 2011; 20: 303-306
  • 98 Ghanem M, Gugleta K, Oettli A et al. Analyse der Venenbewegungen in der Netzhaut von Glaukompatienten. Klin Monatsbl Augenheilkd 2013; 230: 358-362
  • 99 Jonas JB, Nguyen XN, Gusek GC et al. Parapapillary chorioretinal atrophy in normal and glaucoma eyes. I. Morphometric data. Invest Ophthalmol Vis Sci 1989; 30: 908-918
  • 100 Xu L, Wang Y, Yang H et al. Differences in parapapillary atrophy between glaucomatous and normal eyes: the Beijing Eye Study. Am J Ophthalmol 2007; 144: 541-546
  • 101 Suh MH, Park KH. Pathogenesis and clinical implications of optic disk hemorrhage in glaucoma. Surv Ophthalmol 2014; 59: 19-29
  • 102 Kitazawa Y, Shirato S, Yamamoto T. Optic disc hemorrhage in low-tension glaucoma. Ophthalmology 1986; 93: 853-857
  • 103 Healey P. Optic disc haemorrhage: the more we look the more we find. Clin Experiment Ophthalmol 2011; 39: 485-486
  • 104 Suh MH, Park KH. Period prevalence and incidence of optic disc haemorrhage in normal tension glaucoma and primary open-angle glaucoma. Clin Experiment Ophthalmol 2011; 39: 513-519
  • 105 Miyake T, Sawada A, Yamamoto T et al. Incidence of disc hemorrhages in open-angle glaucoma before and after trabeculectomy. J Glaucoma 2006; 15: 164-171
  • 106 Drance SM, Fairclough M, Butler DM et al. The importance of disc hemorrhage in the prognosis of chronic open angle glaucoma. Arch Ophthalmol 1977; 95: 226-228
  • 107 Healey PR, Mitchell P, Smith W et al. Optic disc hemorrhages in a population with and without signs of glaucoma. Ophthalmology 1998; 105: 216-223
  • 108 Yamamoto T, Iwase A, Kawase K et al. Optic disc hemorrhages detected in a large-scale eye disease screening project. J Glaucoma 2004; 13: 356-360
  • 109 Panza JA, Quyyumi AA, Brush jr JE et al. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 1990; 323: 22-27
  • 110 Vita JA, Treasure CB, Nabel EG et al. Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation 1990; 81: 491-497
  • 111 Kim SJ, Park KH. Four cases of normal-tension glaucoma with disk hemorrhage combined with branch retinal vein occlusion in the contralateral eye. Am J Ophthalmol 2004; 137: 357-359
  • 112 Radcliffe NM, Liebmann JM, Rozenbaum I et al. Anatomic relationships between disc hemorrhage and parapapillary atrophy. Am J Ophthalmol 2008; 146: 735-740
  • 113 Boushey CJ, Beresford SA, Omenn GS et al. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA 1995; 274: 1049-1057
  • 114 Brattstrom L, Wilcken DE. Homocysteine and cardiovascular disease: cause or effect?. Am J Clin Nutr 2000; 72: 315-323
  • 115 Ueland PM, Refsum H, Beresford SA et al. The controversy over homocysteine and cardiovascular risk. Am J Clin Nutr 2000; 72: 324-332
  • 116 Ho JD, Hu CC, Lin HC. Open-angle glaucoma and the risk of stroke development: a 5-year population-based follow-up study. Stroke 2009; 40: 2685-2690
  • 117 Rogot E, Goldberg ID, Goldstein H. Survivorship and causes of death among the blind. J Chronic Dis 1966; 19: 179-197
  • 118 Lee AJ, Wang JJ, Kifley A et al. Open-angle glaucoma and cardiovascular mortality. The Blue Mountains Eye Study. Ophthalmology 2006; 113: 1069-1076
  • 119 Sharkawi E, Franks W. Glaucoma and Mortality. Ophthalmology 2008; 115: 213-214
  • 120 McCarty CA, Nanjan MB, Taylor HR. Vision impairment predicts 5 year mortality. Br J Ophthalmol 2001; 85: 322-326
  • 121 Klein R, Klein BE, Moss SE. Age-related eye disease and survival: the Beaver Dam Eye Study. Arch Ophthalmol 1995; 113: 333-339
  • 122 Borger PH, van Leeuwen R, Hulsman CA et al. Is there a direct association between age-related eye diseases and mortality? The Rotterdam Study. Ophthalmology 2003; 110: 1292-1296
  • 123 Akbari M, Akbari S, Pasquale LR. The association of primary open-angle glaucoma with mortality. Arch Ophthalmol 2009; 127: 204-210
  • 124 Le A, Mukesh BN, McCarty CA et al. Risk factors associated with the incidence of open-angle glaucoma: the visual impairment project. Invest Ophthalmol Vis Sci 2003; 44: 3783-3789
  • 125 Schlötzer-Schrehardt U, Naumann GOH. Perspective – Ocular and systemic pseudoexfoliation syndrome. Am J Ophthalmol 2006; 141: 921-937
  • 126 Jünemann AGM. Diagnose und Therapie des Pseudoexfoliationsglaukoms. Ophthalmologe 2012; 109: 962-975
  • 127 Ringvold A, Blika S, Sandvik L. Pseudo-exfoliation and mortality. Acta Ophthalmol Scand 1997; 75: 255-256
  • 128 Shrum KR, Hattenhauer MG, Hodge D. Cardiovascular and cerebrovascular mortality associated with ocular pseudoexfoliation. Am J Ophthalmol 2000; 129: 83-86
  • 129 Ritland JS, Egge K, Lydersen S et al. Exfoliative glaucoma and primary open-angle glaucoma: associations with death causes and comorbidity. Acta Ophthalmol Scand 2004; 82: 401-404
  • 130 Bleich S, Jünemann A, von Ahsen N et al. Homocysteine and risk of open-angle glaucoma. J Neural Transm 2002; 109: 1499-1504
  • 131 Roedl JB, Bleich S, Reulbach U et al. Vitamin deficiency and hyperhomocysteinemia in pseudoexfoliation glaucoma. J Neural Transm 2007; 114: 571-575
  • 132 Bleich S, Roedl J, von Ahsen N et al. Elevated homocysteine levels in aqueous humor of patients with pseudoexfoliation glaucoma. Am J Ophthalmol 2004; 138: 162-164
  • 133 Roedl JB, Bleich S, Reulbach U et al. Homocysteine in tear fluid of patients with pseudoexfoliation glaucoma. J Glaucoma 2007; 16: 234-239
  • 134 Schlötzer-Schrehardt U. Oxidative stress and pseudoexfoliation glaucoma. Klin Monatsbl Augenheilkd 2010; 227: 108-113
  • 135 Naji M, Naji F, Suran D et al. Systemic endothelial dysfunction in patients with pseudoexfoliation syndrome. Klin Monatsbl Augenheilkd 2008; 225: 963-967
  • 136 Schumacher S, Schlötzer-Schrehardt U, Martus P et al. Pseudoexfoliation syndrome and aneurysms of the abdominal aorta. Lancet 2001; 357: 359-360
  • 137 Mitchell P, Wang JJ, Smith W. Association of pseudoexfoliation syndrome with increased vascular risk. Am J Ophthalmol 1997; 124: 685-687
  • 138 Bennion JR, Wise ME, Carver JA et al. Analysis of glaucoma-related mortality in the United States using death certificate data. J Glaucoma 2008; 17: 474-479
  • 139 Jiang X, Varma R, Wu S et al. For the Los Angeles Latino Eye Study Group. Baseline risk factors that predict the development of open-angle glaucoma in a population. The Los Angeles Latino Eye Study. Ophthalmology 2012; 119: 2245-2253
  • 140 Guthauser U, Flammer J, Mahler F. The relationship between digital and ocular vasospasm. Graefes Arch Clin Exp Ophthalmol 1988; 226: 224-226
  • 141 Flammer J, Pache M, Resink T. Vasospasm, its role in the pathogenesis of the diseases with particular reference to the eye. Prog Retin Eye Res 2001; 20: 319-349
  • 142 Ulrich A, Ulrich C, Barth T et al. Detection of disturbed auto regulation of the peripapillary choroids in primary open-angle glaucoma. Ophthalmic Surg Lasers 1996; 27: 746-757
  • 143 Fuchsjäger-Mayrl G, Wally B, Georgopoulos M et al. Ocular blood flow and systemic blood pressure in patients with primary open-angle glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 2004; 45: 834-839
  • 144 Grunwald JE, Riva CE, Stone RR et al. Retinal auto regulation in open-angle glaucoma. Ophthalmology 1984; 91: 1690-1694
  • 145 Freiman PC, Mitchell GG, Heistad DD et al. Atherosclerosis impairs endothelium-dependent vascular relaxation to acetylcholine and thrombin in primates. Circ Res 1986; 58: 783-789
  • 146 Celermajer DS, Sorensen KE, Bull C et al. Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interaction. J Am Coll Cardiol 1994; 24: 1468-1474
  • 147 Calver A, Collier J, Vallance P. Inhibition and stimulation of nitric oxide synthesis in the human forearm arterial bed of patients with insulin-dependent diabetes. J Clin Invest 1992; 90: 2548-2554
  • 148 Celermajer DS, Sorensen KE, Georgakopoulos D et al. Cigarette smoking is associated with dose-related and potentially reversible impairment of endothelium-dependent dilation in healthy young adults. Circulation 1993; 88: 2149-2155
  • 149 Heitzer T, Yla-Herttuala S, Luoma J et al. Cigarette smoking potentiates endothelial dysfunction of forearm resistance vessels in patients with hypercholesterolemia. Role of oxidized LDL. Circulation 1996; 93: 1346-1353
  • 150 Roedl JB, Bleich S, Reulbach U et al. Homocysteine levels in aqueous humor and plasma of patients with primary open angle glaucoma. J Neural Transm 2007; 114: 445-450
  • 151 Roedl JB, Bleich S, Schlötzer-Schrehardt U et al. Increased homocysteine levels in tear fluid of patients with primary open-angle glaucoma. Ophthalmic Res 2008; 40: 249-256
  • 152 Jünemann AGM, Huchzermeyer C, Rejdak R. Medikamentöse Glaukomtherapie – Welche Lehren können wir aus den großen klinischen Studien ziehen?. Ophthalmologe 2013; 110: 1134-1148
  • 153 Malinow MR, Stampfer MJ. Role of plasma homocyst(e)ine in arterial occlusive diseases. Clin Chem 1994; 40: 857-858
  • 154 Meleady R, Graham I. Plasma homocysteine as a cardiovascular risk factor: causal, consequential, or of no consequence?. Nutr Rev 1999; 57: 299-305
  • 155 Starkebaum G, Harlan JM. Endothelial cell injury due to copper-catalyzed hydrogen peroxide generation from homocysteine. J Clin Invest 1986; 77: 1370-1376
  • 156 DʼEmilia DM, Lipton SA. Ratio of S-nitrosohomocyst(e)ine to homocyst(e)ine or other thiols determines neurotoxicity in rat cerebrocortical cultures. Neurosci Lett 1999; 265: 103-106
  • 157 Chambers JC, Obeid OA, Kooner JS. Physiological increments in plasma homocysteine induce vascular endothelial dysfunction in normal human subjects. Arterioscler Thromb Vasc Biol 1999; 19: 2922-2927
  • 158 Böger RH, Lentz SR, Bode-Böger SM et al. Elevation of asymmetrical dimethylarginine may mediate endothelial dysfunction during experimental hyperhomocyst(e)inaemia in humans. Clin Sci (Lond) 2001; 100: 161-167
  • 159 Ashfield-Watt PA, Moat SJ, Doshi SN et al. Folate, homocysteine, endothelial function and cardiovascular disease. What is the link?. Biomed Pharmacother 2001; 55: 425-433
  • 160 Hirano K, Ogihara T, Miki M et al. Homocysteine induces iron-catalyzed lipid peroxidation of low-density lipoprotein that is prevented by alpha-tocopherol. Free Radic Res 1994; 21: 267-276
  • 161 McCully KS. Homocysteine and vascular disease. Nat Med 1996; 2: 386-389
  • 162 Jakubowski H, Zhang L, Bardeguez A et al. Homocysteine thiolactone and protein homocysteinylation in human endothelial cells: implications for atherosclerosis. Circ Res 2000; 87: 45-51
  • 163 Refsum H, Nurk E, Smith AD et al. The Hordaland Homocysteine Study: a community-based study of homocysteine, its determinants, and associations with disease. J Nutr 2006; 136: 1731-1740
  • 164 Haj MD, Ezzaher A, Neffati F et al. Effect of cigarette smoking on plasma homocysteine concentrations. Clin Chem Lab Med 2011; 49: 479-483
  • 165 Zanon-Moreno V, Garcia-Medina JJ, Zanon-Viguer V et al. Smoking, an additional risk factor in elder women with primary open-angle glaucoma. Mol Vis 2009; 15: 2953-2959
  • 166 Kang JH, Wiggs JL, Rosner BA et al. Endothelial nitric oxide synthase gene variants and primary open-angle glaucoma: interactions with hypertension, alcohol intake, and cigarette smoking. Arch Ophthalmol 2011; 129: 773-780
  • 167 Renard JP, Rouland JF, Bron A et al. Nutritional, lifestyle and environmental factors in ocular hypertension and primary open-angle glaucoma: an exploratory case-control study. Acta Ophthalmol 2013; 91: 505-513
  • 168 Chiotoroiu SM, Pop de Popa D, Ştefăniu GI et al. The importance of alcohol abuse and smoking in the evolution of glaucoma disease. J Med Life 2013; 6: 226-229
  • 169 Ramdas WD, Wolfs RC, Hofman A et al. Lifestyle and risk of developing open-angle glaucoma: the Rotterdam study. Arch Ophthalmol 2011; 129: 767-772
  • 170 Edwards R, Thornton J, Ajit R et al. Cigarette smoking and primary open angle glaucoma: a systematic review. J Glaucoma 2008; 17: 558-566
  • 171 Cai L, Ma D, Zhang Y et al. The effect of coffee consumption on serum lipids: a meta-analysis of randomized controlled trials. Eur J Clin Nutr 2012; 66: 872-877
  • 172 Li M, Wang M, Guo W et al. The effect of caffeine on intraocular pressure: a systematic review and meta-analysis. Graefes Arch Clin Exp Ophthalmol 2011; 249: 435-442
  • 173 Pasquale LR, Wiggs JL, Willett WC et al. The Relationship between caffeine and coffee consumption and exfoliation glaucoma or glaucoma suspect: a prospective study in two cohorts. Invest Ophthalmol Vis Sci 2012; 53: 6427-6433
  • 174 Baltes W. Lebensmittelchemie. 6. Aufl.. Berlin, Heidelberg, New York: Springer; 2007
  • 175 Yücel I, Akar Y, Yücel G et al. Effect of hypercholesterolemia on inducible nitric oxide synthase expression in a rat model of elevated intraocular pressure. Vision Res 2005; 45: 1107-1114
  • 176 Erb C. Pleiotrope Effekte in der lokalen medikamentösen Glaukomtherapie. Klin Monatsbl Augenheilkd 2013; 230: 141-145
  • 177 Knopp RH. Drug treatment of lipid disorders. N Engl J Med 1999; 341: 498-511
  • 178 Stein JD, Newman-Casey PA, Talwar N et al. The relationship between statin use and open-angle glaucoma. Ophthalmology 2012; 119: 2074-2081
  • 179 Marcus MW, Müskens RP, Ramdas WD et al. Cholesterol-lowering drugs and incident open-angle glaucoma: a population-based cohort study. PLoS One 2012; 7: 29724
  • 180 Leung DY, Li FC, Kwong YY et al. Simvastatin and disease stabilization in normal tension glaucoma: a cohort study. Ophthalmology 2010; 117: 471-476
  • 181 de Lorgeril M, Salen P, Paillard F et al. Lipid-lowering drugs and homocysteine. Lancet 1999; 353: 209-210
  • 182 Dierkes J, Westphal S, Luley C. Serum homocysteine increases after therapy with fenofibrate or bezafibrate. Lancet 1999; 354: 219-220
  • 183 Jonkers IJ, De Man FH, Onkenhout W et al. Implication of fibrate therapy for homocysteine. Lancet 1999; 354: 1208
  • 184 Harats D, Yadfato O, Doolman R et al. Homocysteine elevation with fibrates: is it a class effect?. Isr Med Assoc J 2001; 3: 243-246
  • 185 Mudd SH, Poole JR. Labile methyl balances for normal humans on various dietary regimens. Metabolism 1975; 24: 721-735
  • 186 Nygard O, Nordrehaug JE, Refsum H et al. Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med 1997; 337: 230-236
  • 187 Mitchell P, Wang JJ, Cumming RG et al. Long-term topical timolol and blood lipids: the Blue Mountains Eye Study. J Glaucoma 2000; 9: 174-178
  • 188 Coleman AL, Diehl DL, Jampel HD et al. Topical timolol decreases plasma high-density lipoprotein cholesterol level. Arch Ophthalmol 1990; 108: 1260-1263
  • 189 Freedman SF, Freedman NJ, Shields MB et al. Effects of ocular carteolol and timolol on plasma high-density lipoprotein cholesterol level. Am J Ophthalmol 1993; 116: 600-611
  • 190 Stewart WC, Osterman J. Serum lipid physiology and the influence of glaucoma medications. Surv Ophthalmol 1998; 43: 233-244
  • 191 Superko HR, Haskell WL, Krauss RM. Association of lipoprotein subclass distribution with use of selective and nonselective beta-blocker medications in patients with coronary heart disease. Atherosclerosis 1993; 101: 1-8
  • 192 Coleman AL, Kdojebacheva G. Risk factors for glaucoma needing more attention. Open Ophthalmol Journal 2009; 3: 38-42
  • 193 Pasquale LR, Kang JH. Lifestyle, nutrition, and glaucoma. J Glaucoma 2009; 18: 423-428
  • 194 Ren H, Magulike N, Ghebremeskel K et al. Primary open-angle glaucoma patients have reduced levels of blood docoshexaenoic and eicosapentaenoic acids. Prostaglandins Leukot Essent Fatty Acids 2006; 74: 4-12
  • 195 Kris-Ertherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular diease. Circulation 2002; 106: 2747-2757
  • 196 Cunnane SC, Plourde M, Pifferi F et al. Fish, docosahexaenoic acid and Alzheimerʼs disease. Prog Lipid Res 2009; 48: 239-256
  • 197 Kang JH, Pasquale LR, Willett WC et al. Dietary fat consumption and primary open-angle glaucoma. Am J Clin Nutr 2004; 79: 755-764
  • 198 Wald NJ, Law MR. A strategy to reduce cardiovascular disease by more than 80 %. Br Med J 2003; 326: 1419
  • 199 Ramulu PY, Maul E, Hochberg C et al. Real-world assessment of physical activity in glaucoma using an accelerometer. Ophthalmology 2012; 119: 1159-1166
  • 200 Yip JLY, Broadway DC, Luben R et al. Physical activity and ocular perfusion pressure: The EPIC-Norfolk Eye Study. Invest Ophthalmol Vis Sci 2011; 52: 8186-8192
  • 201 Mitchell P, Lee AJ, Rochtchina E et al. Open-angle glaucoma and systemic hypertension: the blue mountains eye study. J Glaucoma 2004; 13: 319-326
  • 202 Orzalesi N, Rossetti L, Omboni S. Vascular risk factors in glaucoma: the results of a national survey. Graefes Arch Clin Exp Ophthalmol 2007; 245: 795-802
  • 203 Leske MC. Ocular perfusion pressure and glaucoma: clinical trial and epidemiologic findings. Curr Opin Ophthalmol 2009; 20: 73-78
  • 204 Leske MC, Wu SY, Hennis A et al. Risk factors for incident open-angle glaucoma: the Barbados Eye Studies. Ophthalmology 2008; 115: 85-93
  • 205 Quigley HA, West SK, Rodriguez J et al. The prevalence of glaucoma in a population-based study of Hispanic subjects: Proyecto VER. Arch Ophthalmol 2001; 119: 1819-1826
  • 206 Risner D, Ehrlich R, Kheradiya NS et al. Effects of exercise on intraocular pressure and ocular blood flow: a review. J Glaucoma 2009; 18: 429-436
  • 207 Qureshi I. The effects of mild, moderate, and severe exercise on intraocular pressure in glaucoma patients. Jap J Physiol 1995; 45: 561-569
  • 208 Hamilton-Maxwell KE, Feeney L. Walking for a short distance at a brisk pace reducees intraocular pressure by a clinically significant amount. J Glaucoma 2012; 21: 421-425