Subscribe to RSS
DOI: 10.1055/s-0035-1560173
Highly Efficient Mechanochemical N-Arylation of Amino Alcohols and Diamines with Cu0 Powder
Publication History
Received: 03 July 2015
Accepted after revision: 21 July 2015
Publication Date:
03 September 2015 (online)
Abstract
Cu0-catalysed arylations have rightly acquired great importance over the last decade. This paper reports the N-arylation of amino alcohols and diamines with iodobenzene derivatives in a planetary ball mill and an investigation into the procedure. This newly developed solvent-free protocol is fast, efficient and occurs under the mechanochemical activation of metallic copper powder. It does not require additional ligands and gives excellent yields. This paper aims to broaden the scope of mechanochemical Cu0-activation and so a new one-pot, two-step synthesis that combines CuAAC and N-arylation has been successfully performed and reported herein.
Key words
N-arylation - mechanochemistry - Cu0-catalysed cross-coupling - solvent-free reaction - amino alcoholsSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560173.
- Supporting Information
-
References and Notes
- 1a Siemsen P, Livingston RC, Diederich F. Angew. Chem. Int. Ed. 2000; 39: 2632
- 1b Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Chem. Rev. 2013; 113: 6234
- 1c Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
- 1d Lipshutz BH. Acc. Chem. Res. 1997; 30: 277
- 2 Gilman H, Jones RG, Woods LA. J. Org. Chem. 1952; 17: 1630
- 3a Yang Y, Zhou R, Zhao S, Zheng J. Catal. Lett. 2003; 85: 87
- 3b Iyer S, Thakurr V. J. Mol. Catal. A: Chem. 2000; 157: 275
- 3c Davis TA, Wang C, Rovis T. Synlett 2015; 26: 1520
- 3d Liwosz TW, Sherry RC. Org. Lett. 2013; 15: 3034
- 4a Sonogashira K. J. Organomet. Chem. 2002; 653: 46
- 4b Hassan S, Mueller TJ. J. Adv. Synth. Catal. 2015; 357: 617
- 4c Thomas AM, Sujatha A, Anilkumar G. RSC Advances 2014; 4: 21688
- 4d Tsai W.-T, Lin YY, Chen YA, Lee CF. Synlett 2014; 25: 443
- 5a Glaser C. Ber. Dtsch. Chem. Ges. 1869; 2: 422
- 5b Hay AS. J. Org. Chem. 1962; 27: 3320
- 5c Do H.-Q, Daugulis O. J. Am. Chem. Soc. 2009; 131: 17052
- 5d Klukas F, Perkampus J, Urselmann D, Mueller TJ. J. Synthesis 2014; 46: 3415
- 6a Stephens RD, Castro CE. J. Org. Chem. 1963; 28: 3313
- 6b Castro CE, Havlin R, Honwad VK, Malte AM, Moje SW. J. Am. Chem. Soc. 1969; 91: 6464
- 6c Wang Z.-L, Zhao L, Wang M.-X. Org. Lett. 2012; 14: 1472
- 7a Ullmann F. Chem. Ber. 1903; 36: 2389
- 7b Fanta PE. Synthesis 1974; 139
- 7c Hassan J, Sévignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev. 2002; 102: 1359
- 8 Okano K, Tokuyama H, Fukuyama T. Chem. Commun. 2014; 50: 13650
- 9a Muci AR, Buchwald SL. Top. Curr. Chem. 2002; 219: 131
- 9b Hartwig JF. Angew. Chem. Int. Ed. 1998; 37: 2046
- 10 Sambiagio C, Marsden SP, Blacker AJ, McGowan PC. Chem. Soc. Rev. 2014; 43: 3525
- 11 Beletskaya IP, Cheprakov AV. Coord. Chem. Rev. 2004; 248: 2337
- 12 Antilla JC, Klapars A, Buchwald SL. J. Am. Chem. Soc. 2002; 124: 11684
- 13a Microwaves in Organic Synthesis . De La Hoz A, Loupy A. Wiley; New York: 2012. 3rd ed. Vol. 1
- 13b Rinaldi L, Carnaroglio D, Rotolo L, Cravotto G. J. Chem. 2015; 2015: Article ID 879531; http://www.hindawi.com/journals/ jchem/2015/879531/
- 14 Cintas P, Tagliapietra S, Caporaso M, Tabasso S, Cravotto G. Ultrason. Sonochem. 2015; 25: 8
- 15 Cravotto G, Cintas P. Chem. Eur. J. 2007; 13: 1902
- 16a Stolle A. Ball Milling Towards Green Synthesis: Applications, Projects, Challenges. Ranu B, Stolle A. Royal Society of Chemistry; Cambridge, UK: 2015
- 16b James S, Adams CJ, Bolm C, Braga D, Collier P, Friščić T, Grepioni F, Harris KD. M, Hyett G, Jones W, Krebs A, Mack J, Maini L, Orpen AG, Parkin IP, Shearouse WC, Steedk JW, Waddelli DC. Chem. Soc. Rev. 2012; 41: 413
- 17 Zhang Y, Jamison TF, Patel S, Mainolfi N. Org. Lett. 2011; 13: 280
- 18a Bruckmann A, Krebs A, Bolm C. Green Chem. 2008; 10: 1131
- 18b Barge A, Tagliapietra S, Tei L, Cintas P, Cravotto G. Curr. Org. Chem. 2008; 12: 1588
- 19 Cintas P, Palmisano G, Cravotto G. Ultrason. Sonochem. 2011; 18: 836
- 20a Rinaldi L, Martina K, Baricco F, Rotolo L, Cravotto G. Molecules 2015; 20: 2837
- 20b Cummings AJ, Ravalico F, McColgan-Bannon KI. S, Eguaogie O, Elliott PA, Shannon MR, Bermejo IA, Dwyer A, Maginty AB, Mack J, Vyle JS. Nucleosides, Nucleotides Nucleic Acids 2015; 34: 361
- 20c Cook TL, Walker JA. Jr, Mack J. Green Chem. 2013; 15: 617
- 21 Cravotto G, Calcio Gaudino E, Cintas P. Chem. Soc. Rev. 2013; 42: 7521
- 22 Cintas P, Barge A, Tagliapietra S, Boffa L, Cravotto G. Nat. Protoc. 2010; 5: 607
- 23 Wang G. Chem. Soc. Rev. 2013; 42: 7668
- 24 Schneider F, Szuppa T, Stolle A, Ondruschka B, Hopf H. Green Chem. 2009; 11: 1894
- 25 Tolle A, Schmidt R, Jacob K. Faraday Discuss. 2014; 170: 267
- 26a Arai S, Takamichi Y, Ototake S, Hida M. Bull. Chem. Soc. Jpn. 1977; 50: 547
- 26b Yin H, Jin M, Chen W, Chen C, Zheng L, Wei P, Han S. Tetrahedron Lett. 2012; 53: 1265
- 27 Job GE, Buchwald SL. Org. Lett. 2002; 4: 3703
- 28 Jiao J, Zhang X, Chang N, Wang J, Wei J, Shi X, Chen Z. J. Org. Chem. 2011; 76: 1180
- 29 General Procedure for Cu0-Catalysed N-Arylation of Amino Alcohols or Ethylendiamine with Iodobenzenes in Ball Mill: The milling jar (50 mL; stainless steel) were equipped with 1500 milling balls (d = 2 mm, stainless steel) and 48 medium balls (d = 5 mm, stainless steel). Afterwards basic Al2O3 90 active (1 g), and KOH (3.7 mmol) were added and milled for 10 min at 450 rpm. After that the aryl iodide (1 mmol), the amino alcohol (3 mmol) or ethylendiamine (10 mmol) and Cu0 powder (1 mmol, 63 mg) were added in the given order. Milling was accomplished at 650 rpm for 30 min. After cooling of the milling jar to r.t., the crude products were washed from Al2O3 on Büchner funnel with a sintered glass disc using ethyl acetate. The solvent was evaporated in vacuum, the crude products were dried and analysed by GC–MS. The mixture was purified by flash chromatography on silica gel (hexane–EtOAc) to afford the desired product. The pure products were analysed by 1H NMR, 13C NMR spectroscopy and MALDI–TOF mass spectrometry after dissolution in an appropriate solvent.
- 30 When performed under sonochemical conditions, the reaction mixture was reacted in an ultrasonic bath equipped with a transducer operating at 25 KHz. (24 KHz, R.E.U.S. Contes, France).
- 31 When performed under conventional condition the reaction was stirred at room temperature.
- 32 Ma D, Zhang Y, Yao J, Wu S, Tao F. J. Am. Chem. Soc. 1998; 120: 12459
- 33 Narendar N, Velmathi S. Tetrahedron Lett. 2009; 50: 5159
- 34 3-(N-Methyl-4-methoxyphenylamino)propane-1,2-diol (3n): yellowish amorphous solid (32%). 1H NMR (300 MHz, CDCl3): δ = 6.85 (m, 4 H), 3.95 (m, 1 H), 3.76 (m, 4 H), 3.52–3.58 (dd, J = 6.0 Hz, 1 H), 3.26–3.29 (m, 1 H), 3.16 (m, 1 H), 2.87 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 153.28, 144.64, 116.69, 114.57, 68.89, 64.20, 57.78, 55.62, 40.51. MS (MALDI–TOF): m/z [M + H]+ calcd for C11H17NO3: 212.1256; found: 212.1264.
- 35 Triazole derivative 3o: white powder (56%). 1H NMR (300 MHz, CDCl3): δ = 7.71 (d, J = 8.4 Hz, 2 H), 7.53 (s, 1 H), 7.34 (d, J = 7.3 Hz, 2 H), 7.17–7.27 (m, 1 H), 6.56 (d, J = 8.5 Hz, 2 H), 5.36 (s, 2 H), 3.11 (br s, 2 H), 2.89 (t, J = 5.7 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 149.3, 148.3, 131.1, 130.2, 129.2, 128.4, 126.1, 123.1, 119.6, 113.5, 54.5, 46.6, 41.4. MS (MALDI–TOF): m/z [M + H]+ calcd for C17H19N5: 294.1640; found: 294.1644.
For reviews, see: