Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2016; 27(04): 586-590
DOI: 10.1055/s-0035-1560485
DOI: 10.1055/s-0035-1560485
cluster
Enantioselective Synthesis of Tetrahydroindolizines via Ruthenium–Chiral Phosphoric Acid Sequential Catalysis
Further Information
Publication History
Received: 29 June 2015
Accepted after revision: 04 September 2015
Publication Date:
01 October 2015 (online)
Abstract
A chiral phosphoric acid and a ruthenium complex were found to catalyze an olefin cross-metathesis–asymmetric intramolecular Friedel–Crafts alkylation of N-tethered olefin pyrroles and conjugated enones to provide a variety of chiral tetrahydroindolizine derivatives in moderate to good yields and enantioselectivity (up to 93% ee).
Key words
chiral phosphoric acid - Friedel–Crafts reaction - pyrrole, sequential catalysis - tetrahydroindolizine - Zhan-1BSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560485.
- Supporting Information
-
References and Notes
- 1a Linde HH. A. Helv. Chim. Acta 1965; 48: 1822
- 1b Abraham DJ, Rosenstein RD, Lyon RL, Fong HH. S. Tetrahedron Lett. 1972; 13: 909
- 1c Schröder F, Franke S, Francke W, Baumann H, Kaib M, Pasteels JM, Daloze D. Tetrahedron 1996; 52: 13539
- 1d Banwell MG, Edwards AJ, Jolliffe KA, Smith JA, Hamel E, Verdier-Pinard P. Org. Biomol. Chem. 2003; 1: 296
- 1e Dinsmore A, Mandy K, Michael JP. Org. Biomol. Chem. 2006; 4: 1032
- 1f Baudoin O, Guénard D, Guéritte F. Mini-Rev. Org. Chem. 2004; 1: 333
- 2a Michael JP. Nat. Prod. Rep. 2008; 25: 139
- 2b Kim IS, Jung YH. Heterocycles 2011; 83: 2489
- 2c Liddell JR. Nat. Prod. Rep. 1998; 15: 363
- 3a Banwell MG, Beck DA. S, Smith JA. Org. Biomol. Chem. 2004; 2: 157
- 3b Lahmam T, Gmeiner P. Heterocycles 2000; 53: 1371
- 3c Corvo MC, Pereira MM. A. Tetrahedron Lett. 2002; 43: 455
- 3d Johnson JA, Li N, Sames D. J. Am. Chem. Soc. 2002; 124: 6900
- 3e Liu Z, Wasmuth AS, Nelson SG. J. Am. Chem. Soc. 2006; 128: 10352
- 4a Banwell MG, Beck DA. S, Willis AC. ARKIVOC 2006; 163
- 4b Conrad JC, Kong J, Laforteza BN, MacMillan DW. C. J. Am. Chem. Soc. 2009; 131: 11640
- 4c Ortega N, Tang D.-TD, Urban S, Zhao D, Glorius F. Angew. Chem. Int. Ed. 2013; 52: 9500
- 4d Du X.-W, Ghosh A, Stanley LM. Org. Lett. 2014; 16: 4036
- 4e Gualtierotti J.-B, Pasche D, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2014; 53: 9926
- 5a Shao Z, Zhang H. Chem. Soc. Rev. 2009; 38: 2745
- 5b Zhou J. Chem. Asian J. 2010; 5: 422
- 5c Zhong C, Shi X. Eur. J. Org. Chem. 2010; 2999
- 5d Rueping M, Koenigs RM, Atodiresei I. Chem. Eur. J. 2010; 16: 9350
- 5e Du Z, Shao Z. Chem. Soc. Rev. 2013; 42: 1337
- 5f Wu X, Li M, Gong L. Acta Chim. Sin. (Engl. Ed.) 2013; 71: 1091
- 5g Lv F, Liu S, Hu W. Asian J. Org. Chem. 2013; 2: 824
- 5h Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
- 5i Chen D.-F, Han Z.-Y, Zhou X.-L, Gong L.-Z. Acc. Chem. Res. 2014; 47: 2365
- 5j Yang Z.-P, Zhang W, You S.-L. J. Org. Chem. 2014; 79: 7785
- 6a Cai Q, Zhao Z.-A, You S.-L. Angew. Chem. Int. Ed. 2009; 48: 7428
- 6b Cai Q, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2010; 49: 8666
- 6c An X.-L, Chen J.-R, Li C.-F, Zhang F.-G, Zou Y.-Q, Guo Y.-C, Xiao W.-J. Chem. Asian J. 2010; 5: 2258
- 6d Cai Q, Liang X.-W, Wang S.-G, Zhang J.-W, Zhang X, You S.-L. Org. Lett. 2012; 14: 5022
- 6e Zhang J.-W, Cai Q, Gu Q, Shi X.-X, You S.-L. Chem. Commun. 2013; 49: 7750
- 6f Liu H, Zeng C, Guo J, Zhang M, Yu S. RSC Adv. 2013; 3: 1666
- 6g Shi Y.-C, Wang S.-G, Yin Q, You S.-L. Org. Chem. Front. 2014; 1: 39
- 6h Zhang J.-W, Liu X.-W, Gu Q, Shi X.-X, You S.-L. Org. Chem. Front. 2015; 2: 476
- 7a Uraguchi D, Sorimachi K, Terada M. J. Am. Chem. Soc. 2004; 126: 11804
- 7b Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
- 7c Akiyama T. Chem. Rev. 2007; 107: 5744
- 7d Gao Y.-J, Yang L.-H, Song S.-J, Ma J.-J, Tang R.-X, Bian R.-H, Liu H.-Y, Wu Q.-H, Wang C. Chin. J. Org. Chem. 2008; 28: 8
- 7e Terada M. Chem. Commun. 2008; 4097
- 7f Terada M. Synthesis 2010; 1929
- 7g Su Y, Shi F. Chin. J. Org. Chem. 2010; 30: 486
- 7h Zamfir A, Schenker S, Freund M, Tsogoeva SB. Org. Biomol. Chem. 2010; 8: 5262
- 7i Rueping M, Kuenkel A, Atodiresei I. Chem. Soc. Rev. 2011; 40: 4539
- 8a Wang Y, Ding K.-L. Chin. J. Org. Chem. 2001; 21: 763
- 8b Bandini M, Melloni A, Umani-Ronchi A. Angew. Chem. Int. Ed. 2004; 43: 550
- 8c Bandini M, Melloni A, Tommasi S, Umani-Ronchi A. Synlett 2005; 1199
- 8d Sheng Y.-F, Zhang AJ, Zheng X.-J, You S.-L. Chin. J. Org. Chem. 2008; 28: 605
- 8e Poulsen TB, Jørgensen KA. Chem. Rev. 2008; 108: 2903
- 8f You S.-L, Cai Q, Zeng M. Chem. Soc. Rev. 2009; 38: 2190
- 8g Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
- 8h Zeng M, You S.-L. Synlett 2010; 1289
- 8i Terrasson V, de Figueiredo RM, Campagne JM. Eur. J. Org. Chem. 2010; 2635
- 8j Rueping M, Nachtsheim BJ. Beilstein J. Org. Chem. 2010; 6: 6
- 8k Chauhan P, Chimni SS. RSC Adv. 2012; 2: 6117
- 9a Paras NA, MacMillan DW. C. J. Am. Chem. Soc. 2001; 123: 4370
- 9b Li G, Rowland GB, Rowland EB, Antilla JC. Org. Lett. 2007; 9: 4065
- 9c Trost BM, Müller C. J. Am. Chem. Soc. 2008; 130: 2438
- 9d Cao C.-L, Zhou Y.-Y, Sun X.-L, Tang Y. Tetrahedron 2008; 64: 10676
- 9e Yokoyama N, Arai T. Chem. Commun. 2009; 3285
- 9f Sheng Y.-F, Gu Q, Zhang A.-J, You S.-L. J. Org. Chem. 2009; 74: 6899
- 9g Singh PK, Singh VK. Org. Lett. 2010; 12: 80
- 9h Kashikura W, Itoh J, Mori K, Akiyama T. Chem. Asian J. 2010; 5: 470
- 9i Guo F, Chang D, Lai G, Zhu T, Xiong S, Wang S, Wang Z. Chem. Eur. J. 2011; 17: 11127
- 9j Aikawa K, Honda K, Mimura S, Mikami K. Tetrahedron Lett. 2011; 52: 6682
- 9k Liu L, Ma H, Xiao Y, Du F, Qin Z, Fu B. Chem. Commun. 2012; 48: 9281
- 9l Zeng M, Zhang W, You S.-L. Chin. J. Chem. 2012; 30: 2615
- 9m Hack D, Enders D. Synthesis 2013; 45: 2904
- 9n Zhang D, Qiu H, Jiang L, Lv F, Ma C, Hu W. Angew. Chem. Int. Ed. 2013; 52: 13356
- 9o Hua Y.-Z, Han X.-W, Yang X.-C, Song X, Wang M.-C, Chang J.-B. J. Org. Chem. 2014; 79: 11690
- 9p Wu K, Zhuo M.-H, Sha D, Fan Y.-S, An D, Jiang Y.-J, Zhang S. Chem. Commun. 2015; 15: 8054
- 10 See the Supporting Information for details.
- 11 Typical Procedure for the Sequential Catalysis A flame-dried Schlenk tube was cooled to r.t. To a solution of olefin pyrrole 2a (42.2 mg, 0.20 mmol, 1.0 equiv) in toluene (2 mL) was added enone 3a (31.7 mg, 1.2 equiv) and 3 Å MS (50 mg), then chiral phosphoric acid (S)-1f (7.0 mg, 0.01 mmol, 5 mol%) and Zhan-1B (7.3 mg, 0.01 mmol, 5 mol%) were added in one portion. The reaction was stirred at r.t. After the reaction was complete (monitored by TLC), it was quenched with sat. NaHCO3 solution and extracted with EtOAc. The organic layers were washed with brine, dried over anhydrous Na2SO4, and filtered. After the solvent was removed in vacuo, the crude product was purified by neutral Al2O3 column chromatography (PE–EtOAc, 30:1 to 20:1) to afford product 4aa. Yellow oil, 42.8 mg, 70% yield, 88% ee [Daicel Chiralcel OD-H (0.46 cm × 25 cm), n-hexane–2-PrOH, 95:5, v = 0.5 mL min–1, λ = 254 nm, t R (minor) = 41.34 min, t R (major) = 30.02 min]; [α]D 25 –42.6 (c 0.65, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 8.04 (d, J = 7.2 Hz, 2 H), 7.63–7.58 (m, 1 H), 7.53–7.48 (m, 2 H), 7.44–7.37 (m, 4 H), 7.32–7.26 (m, 1 H), 6.24 (d, J = 3.3 Hz, 1 H), 6.05 (d, J = 3.9 Hz, 1 H), 4.07–4.00 (m, 1 H), 3.95–3.86 (m, 1 H), 3.75–3.66 (m, 1 H), 3.56 (dd, J = 16.8, 4.5 Hz, 1 H), 3.27 (dd, J = 16.5, 8.7 Hz, 1 H), 2.23–2.15 (m, 1 H), 2.08–1.84 (m, 2 H), 1.56–1.44 (m, 1 H). 13C NMR (75 MHz, CDCl3): δ = 199.2, 137.4, 134.0, 133.8, 133.4, 133.2, 128.9, 128.5, 128.4, 126.7, 108.4, 104.5, 45.3, 45.1, 31.1, 27.6, 23.1. IR (thin film): νmax = 3059, 2925, 2864, 1680, 1597, 1505, 1472, 1445, 1414, 1356, 1306, 1278, 1204, 1180, 1074, 1023, 995, 916, 801, 748, 692, 622 cm–1. ESI-HRMS: m/z calcd for C22H22NO [M + H]+: 316.1696; found: 316.1696.
For a review, see:
For reviews on the synthesis of indolizidine alkaloids, see:
For recent reviews on the combination of a transition-metal catalysis and organocatalysis, see:
Selected examples on CM–asymmetric reaction, see:
Pioneering works on chiral phosphoric acid, see:
For selected reviews on chiral phosphoric acid, see:
For reviews on asymmetric Friedel–Crafts reactions, see:
Selected examples on Friedel–Crafts reaction of pyrroles, see: