RSS-Feed abonnieren
DOI: 10.1055/s-0035-1560597
Asymmetric Epoxidation of Enones by Peptide-Based Catalyst: A Strategy Inverting Juliá–Colonna Stereoselectivity
Publikationsverlauf
Received: 04. Oktober 2015
Accepted after revision: 08. November 2015
Publikationsdatum:
23. Dezember 2015 (online)
Abstract
A resin-supported peptide catalyst with an N-terminal primary amino group was developed for asymmetric epoxidation of enones through iminium activation. The peptide has N-terminal l-3-(1-pyrenyl)alanine, a non-natural amino acid with a bulky side chain, which is connected to l-proline and then to 310-helical (l-Leu-l-Leu-Aib)2 (Aib: 2-aminoisobutyric acid). This peptide successfully catalyzed the asymmetric epoxidation of β-aryl-substituted enones with electron-withdrawing groups on the aryl group. The feature of the present peptide catalyst is that the sense of the enantioselectivity is opposite to that of Juliá–Colonna reaction, oligo-l-Leu-catalyzed epoxidation of enones, while both of the peptide catalysts consist of l-amino acids.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560597.
- Supporting Information
-
References and Notes
- 1a Davie EA. C, Menne SM, Xu Y, Miller SJ. Chem. Rev. 2007; 107: 5759
- 1b Wennemers H. Chem. Commun. 2011; 47: 12036
- 2a Lewis CA, Gustafson JL, Chiu A, Balsells J, Pollard D, Murry J, Reamer RA, Hansen KB, Miller SJ. J. Am. Chem. Soc. 2008; 130: 16358
- 2b Cowen BJ, Saunders LB, Miller SJ. J. Am. Chem. Soc. 2009; 131: 6105
- 2c Fiori KW, Puchlopek LA, Miller SJ. Nat. Chem. 2009; 8: 630
- 2d Hrdina R, Müller CE, Schreiner PR. Chem. Commun. 2010; 46: 2689
- 2e Fowler BS, Mikochik PJ, Miller SJ. J. Am. Chem. Soc. 2010; 132: 2870
- 2f Gustafson JL, Lim D, Miller SJ. Science 2010; 328: 1251
- 2g Müller CE, Hrdina R, Wende RC, Schreiner PR. Chem. Eur. J. 2011; 17: 6390
- 2h Kolundzic F, Noshi MN, Tjandra M, Movassaghi M, Miller SJ. J. Am. Chem. Soc. 2011; 133: 9104
- 2i Han X, Zhong F, Wang Y, Lu Y. Angew. Chem. Int. Ed. 2012; 51: 767
- 2j Müller CE, Zell D, Hrdina R, Wende RC, Wanka L, Schuler SM. M, Schreiner PR. J. Org. Chem. 2013; 78: 8465
- 2k Schettini R, Nardone B, De Riccardis F, Della Sala G, Izzo I. Eur. J. Org. Chem. 2014; 7793
- 2l Romney DK, Colvin SM, Miller SJ. J. Am. Chem. Soc. 2014; 136: 14019
- 2m Matsumoto M, Lee SJ, Waters ML, Gagné MR. J. Am. Chem. Soc. 2014; 136: 15817
- 2n Akagawa K, Sakai N, Kudo K. Angew. Chem. Int. Ed. 2015; 54: 1822
- 2o Takeuchi H, Mishiro K, Ueda Y, Fujimori Y, Furuta T, Kawabata T. Angew. Chem. Int. Ed. 2015; 54: 6177
- 3a Blank JT, Miller SJ. Pept. Sci. 2006; 84: 38
- 3b Formaggio F, Barazza A, Bertocco A, Toniolo C, Broxterman QB, Kaptein B, Brasola E, Pengo P, Pasquato L, Scrimin P. J. Org. Chem. 2004; 69: 3849
- 3c Krattiger P, Kovasy R, Revell JD, Ivan S, Wennemers H. Org. Lett. 2005; 7: 1101
- 3d Chen P, Qu J. J. Org. Chem. 2011; 76: 2994
- 3e Akagawa K, Suzuki R, Kudo K. Adv. Synth. Catal. 2012; 354: 1280
- 3f Nguyen QN. N, Lodewyk MW, Bezer S, Gagné MR, Waters ML, Tantillo DJ. ACS Catal. 2015; 5: 1616
- 4 Juliá S, Masana J, Vega JC. Angew. Chem., Int. Ed. Engl. 1980; 19: 929
- 5a Porter MJ, Roberts SM, Skidmore J. Bioorg. Med. Chem. 1999; 7: 2145
- 5b Carrea G, Colonna S, Kelly DR, Lazcano A, Ottolina G, Roberts SM. Trends Biotechnol. 2005; 23: 507
- 5c Kelly DR, Roberts SM. Pept. Sci. 2006; 84: 74
- 6a Nagano M, Doi M, Kurihara M, Suemune H, Tanaka M. Org. Lett. 2010; 12: 3564
- 6b Weyer A, Díaz D, Nierth A, Schlörer NE, Berkessel A. ChemCatChem 2012; 4: 337
- 7a Ueyanagi K, Inoue S. Makromol. Chem. 1976; 177: 2807
- 7b Carrea G, Ottolina G, Lazcano A, Pironti V, Colonna S. Tetrahedron: Asymmetry 2007; 18: 1265
- 7c Akagawa K, Kudo K. Tetrahedron Lett. 2012; 53: 5981
- 8a Kelly DR, Roberts SM. Chem. Commun. 2004; 2018
- 8b Colonna S, Perdicchia D, Di Mauro E. Tetrahedron: Asymmetry 2009; 20: 1709
- 8c Kelly DR, Caroff E, Flood RW, Heal W, Roberts SM. Chem. Commun. 2004; 2016
- 8d Berkessel A, Koch B, Toniolo C, Rainaldi M, Broxterman QB, Kaptein B. Pept. Sci. 2006; 84: 90
- 9a Erkkilä A, Majander I, Pihko PM. Chem. Rev. 2007; 107: 5416
- 9b Mukherjee S, Yang JW, Hoffman S, List B. Chem. Rev. 2007; 107: 5471
- 9c Melchiorre P, Marigo M, Carlone A, Bartoli G. Angew. Chem. Int. Ed. 2008; 47: 6138
- 9d Bertelsen S, Jørgensen KA. Chem. Soc. Rev. 2009; 38: 2178
- 10a Martin HJ, List B. Synlett 2003; 1901
- 10b Kofoed J, Nielsen J, Reymond J.-L. Bioorg. Med. Chem. Lett. 2003; 13: 2445
- 10c Tang Z, Yang Z.-H, Cun L.-F, Gong L.-Z, Mi A.-Q, Jiang Y.-Z. Org. Lett. 2004; 6: 2285
- 10d Xu Y, Zou W, Sundén H, Ibrahem I, Córdova A. Adv. Synth. Catal. 2006; 348: 418
- 10e Córdova A, Zou W, Dziedzic P, Ibrahem I, Reyes E, Xu Y. Chem. Eur. J. 2006; 12: 5383
- 10f Wiesner M, Revell JD, Wennemers H. Angew. Chem. Int. Ed. 2008; 47: 1871
- 10g D’Elia V, Zwicknagl H, Reiser O. J. Org. Chem. 2008; 73: 3262
- 10h Yan J, Wang L. Synthesis 2008; 2065
- 10i Wu F.-C, Da C.-S, Du Z.-X, Guo Q.-P, Li W.-P, Yi L, Jia Y.-N, Ma X. J. Org. Chem. 2009; 74: 4812
- 10j Freund M, Schenker S, Tsogoeva SB. Org. Biomol. Chem. 2009; 7: 4279
- 10k Wiesner M, Upert G, Angelici G, Wennemers H. J. Am. Chem. Soc. 2010; 132: 6
- 10l Rulli G, Duangdee N, Baer K, Hummel W, Berkessel A, Gröger H. Angew. Chem. Int. Ed. 2011; 50: 7944
- 10m Akagawa K, Kudo K. Org. Lett. 2011; 13: 3498
- 10n Akagawa K, Kudo K. Angew. Chem. Int. Ed. 2012; 51: 12786
- 10o Duschmalé J, Wennemers H. Chem. Eur. J. 2012; 18: 1111
- 10p Kastl R, Wennemers H. Angew. Chem. Int. Ed. 2013; 52: 7228
- 10q Akagawa K, Sen J, Kudo K. Angew. Chem. Int. Ed. 2013; 52: 11585
- 10r Psarra A, Kokotos CG, Moutevelis-Minakakis P. Tetrahedron 2014; 70: 608
- 11 Akagawa K, Kudo K. Adv. Synth. Catal. 2011; 353: 843
- 12a Marigo M, Franzén J, Poulsen TB, Zhuang W, Jørgensen KA. J. Am. Chem. Soc. 2005; 127: 6964
- 12b Lee S, MacMillan DW. C. Tetrahedron 2006; 62: 11413
- 12c Zhao G.-L, Ibrahem I, Sundén H, Córdova A. Adv. Synth. Catal. 2007; 349: 1210
- 12d Wang X, List B. Angew. Chem. Int. Ed. 2008; 47: 1119
- 12e Sparr C, Schweizer WB, Senn HM, Gilmour R. Angew. Chem. Int. Ed. 2009; 48: 3065
- 12f Bondzic BP, Urushima T, Ishikawa H, Hayashi Y. Org. Lett. 2010; 12: 5434
- 13a Bartoli G, Melchiorre P. Synlett 2008; 1759
- 13b Xu L.-W, Luo J, Lu Y. Chem. Commun. 2009; 1807
- 13c Chai Z, Zhao G. Catal. Sci. Technol. 2012; 2: 29
- 13d Zhang L, Luo S. Synlett 2012; 23: 1575
- 13e Serdyuk OV, Heckel CM, Tsogoeva SB. Org. Biomol. Chem. 2013; 11: 7051
- 14a Peris G, Jakobsche CE, Miller SJ. J. Am. Chem. Soc. 2007; 129: 8710
- 14b Jakobsche CE, Peris G, Miller SJ. Angew. Chem. Int. Ed. 2008; 47: 6707
- 14c Lichtor PA, Miller SJ. J. Am. Chem. Soc. 2014; 136: 5301
- 14d Abascal NC, Lichtor PA, Giuliano MW, Miller SJ. Chem. Sci. 2014; 5: 4504
- 15 Akagawa K, Suzuki R, Kudo K. Asian J. Org. Chem. 2014; 3: 514
- 16a Demizu Y, Tanaka M, Nagano M, Kurihara M, Doi M, Maruyama T, Suemune H. Chem. Pharm. Bull. 2007; 55: 840
- 16b Demizu Y, Doi M, Kurihara M, Okuda H, Nagano M, Suemune H, Tanaka M. Org. Biomol. Chem. 2011; 9: 3303
- 17a Juliá S, Guixer J. Tetrahedron 1984; 40: 5207
- 17b Itsuno S, Sakakura M, Ito K. J. Org. Chem. 1990; 55: 6047
- 17c Bentley PA, Kroutil W, Littlechild JA, Roberts SM. Chirality 1997; 9: 198
- 17d Geller T, Roberts SM. J. Chem. Soc., Perkin Trans. 1 1999; 1397
- 17e Flood RW, Geller TP, Petty SA, Roberts SM, Skidmore J, Volk M. Org. Lett. 2001; 3: 683
- 17f Berkessel A, Gasch N, Glaubitz K, Koch C. Org. Lett. 2001; 3: 3839
- 17g Baars S, Drauz K.-H, Krimmer H.-P, Roberts SM, Sander J, Skidmore J, Zanardi G. Org. Process Res. Dev. 2003; 7: 509
- 17h Yi H, Zou G, Li Q, Chen Q, Tang J, He M. Tetrahedron Lett. 2005; 46: 5665
- 17i Qiu W, He L, Chen Q, Luo W, Yu Z, Yang F, Tang J. Tetrahedron Lett. 2009; 50: 5225
- 17j Miranda R.-A, Llorca J, Medina F, Sueiras JE, Segarra AM. J. Catal. 2011; 282: 65
- 18a Reisinger CM, Wang X, List B. Angew. Chem. Int. Ed. 2008; 47: 8112
- 18b Wang X, Reisinger CM, List B. J. Am. Chem. Soc. 2008; 130: 6070
- 18c Lifchits O, Mahlau M, Reisinger CM, Lee A, Farès C, Polyak I, Gopakumar G, Thiel W, List B. J. Am. Chem. Soc. 2013; 135: 6677
- 19a Lu Y, Zeng C, Yang Y, Zhao G, Zou G. Adv. Synth. Catal. 2011; 353: 3129
- 19b Lu X, Liu Y, Sun B, Cindric B, Deng L. J. Am. Chem. Soc. 2008; 130: 8134
- 20a Lattanzi A. Org. Lett. 2005; 7: 2579
- 20b Lattanzi A. Adv. Synth. Catal. 2006; 348: 339
- 20c Capobianco A, Russo A, Lattanzi A, Peluso A. Adv. Synth. Catal. 2012; 354: 2789
- 20d Li Y, Liu X, Yang Y, Zhao G. J. Org. Chem. 2007; 72: 288
- 20e Zheng C, Li Y, Yang Y, Wang H, Cui H, Zhang J, Zhao G. Adv. Synth. Catal. 2009; 351: 1685
- 20f Lu J, Xu Y.-H, Liu F, Loh T.-P. Tetrahedron Lett. 2008; 49: 6007
- 20g Qiaofeng W, Hui C, Peng L, Quanjun W, Xuguo W, Shengyong Z. Chin. J. Org. Chem. 2009; 29: 1616
- 21a Wong OA, Shi Y. Chem. Rev. 2008; 108: 3958
- 21b Zhu Y, Wang Q, Cornwall RG, Shi Y. Chem. Rev. 2014; 114: 8199
- 21c Davis RL, Stiller J, Naicker T, Jiang H, Jørgensen KA. Angew. Chem. Int. Ed. 2014; 53: 7406
- 22a Bentley PA, Flood RW, Roberts SM, Skidmore J, Smith CB, Smith JA. Chem. Commun. 2001; 1616
- 22b Takagi R, Manabe T, Shiraki A, Yoneshige A, Hiraga Y, Kojima S, Ohkata K. Bull. Chem. Soc. Jpn. 2000; 73: 2115
- 22c Banfi S, Colonna S, Molinari H. Tetrahedron 1984; 40: 5207
- 23 Such a deactivation of the catalyst hampered the reuse of the catalyst even under optimum conditions.
- 24 When the R1 group of substrate 2 was 4-methoxyphenyl, epoxidation did not proceed.
- 25 Typical Procedure for Peptide-Catalyzed Epoxidation Water (200 μL) was added slowly with stirring to a round-bottom flask that contained enone 2f (0.03 mmol), resin-supported Ala(1-Pyn)-Pro-(Leu-Leu-Aib)2 (54 mg, 0.012 mmol of the N-terminal amino group), benzoic acid (0.006 mmol), and THF (100 μL). UHP (1.5 mmol) was added, and the flask was warmed to 40 °C. After stirring the mixture for 48 h, an aq sat. solution of NH4Cl was added. The resulting mixture was stirred for 5 min, and peptide catalyst was filtered off and washed with CHCl3. The filtrate solution was extracted with CHCl3, and the organic layer was dried over anhydrous MgSO4. After the removal of the solvent under reduced pressure, the residue was purified by preparative TLC (hexanes–EtOAc, 2:1) to afford epoxy ketone 3f. The amounts of the catalyst and benzoic acid, and the reaction time varied depending on a substrate (see the footnotes of Table 2)
- 26 Characterization Data of Epoxy Ketones (3S,4R)-Epoxy-4-(3,5-dichlorophenyl)butan-2-one (3f) 1H NMR (400 MHz, CDCl3): δ = 7.35 (t, J = 1.8 Hz, 1 H), 7.17 (d, J = 1.8 Hz, 2 H), 3.97 (d, J = 1.8 Hz, 1 H), 3.43 (d, J = 1.8 Hz, 1 H), 2.20 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 203.09, 138.60, 135.54, 129.16, 124.16, 63.03, 56.31, 24.96. HRMS–FAB: m/z calcd for C10H9Cl2O2 [M + H]+: 230.9979; found: 230.9979. The ee was determined by HPLC analysis (Chiralcel OJ-H; hexane–2-PrOH, 95:5; 1.0 mL min–1): t R (major) = 20.3 min; t R (minor) = 22.1 min. (1R,2S)-Epoxy-1-(2,4-dinitrophenyl)pentan-3-one (3i) 1H NMR (400 MHz, CDCl3): δ = 9.06 (d, J = 2.3 Hz, 1 H), 8.55 (dd, J = 8.7, 2.3 Hz, 1 H), 7.88 (d, J = 8.7 Hz, 1 H), 4.65 (d, J = 2.1 Hz, 1 H), 3.47 (d, J = 2.1 Hz, 1 H), 2.63 (dt, J = 17.4, 7.3 Hz, 1 H), 2.53 (dt, J = 17.4, 7.3 Hz, 1 H), 1.73 (sext, J = 7.3 Hz, 2 H), 1.00 (t, J = 7.3 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 203.58, 147.84, 147.45, 138.83, 128.96, 128.64, 120.53, 61.28, 55.83, 40.23, 16.55, 13.62. HRMS–FAB: m/z calcd for C12H13N2O6 [M + H]+: 281.0773; found: 281.0770. The ee was determined by HPLC analysis (Chiralcel OD-H; hexane–2-PrOH, 70:30; 0.8 mL min–1): t R (major) = 29.9 min; t R (minor) = 43.5 min.
For reviews, see:
For recent selected examples of reactions with peptide catalysts, see:
For selected examples, see:
For reviews, see:
For examples of recent study, see:
For other examples of reactions catalyzed by helical poly(amino acid)s, see:
For reviews, see:
For selected examples, see:
For examples of organocatalytic epoxidation of enals, see:
For reviews of organocatalysts with primary amino groups, see:
Miller and co-workers have developed novel peptide-catalyzed epoxidation, in which the side chain of an aspartic acid residue forms a peracid for oxidizing a substrate, see:
In Juliá–Colonna epoxidation, polymer-supported catalysts have been utilized, see:
Other groups have also reported epoxidation of enones through the iminium activation. However, only β-alkylated substrates were used, see:
There are examples for epoxidation of enones by the catalysts with amino groups. In those cases, however, the reaction is considered to proceed through a different activation mechanism, see:
For reviews of epoxidation with other organocatalysts, see:
For other examples of N-substituted peptides, see: