Subscribe to RSS
DOI: 10.1055/s-0035-1561368
Redox Control in Olefin Polymerization and Copolymerization
Publication History
Received: 23 December 2015
Accepted after revision: 20 January 2016
Publication Date:
08 February 2016 (online)
Abstract
In the field of olefin polymerization, catalyst modification remains the prevalent strategy to control the polymerization and copolymerization processes. The development of alternative strategies is, nevertheless, highly fascinating. Here, the concept of redox-controlled polymerization and its applications in the ring-opening polymerization of cyclic ester type monomers is presented. Early work on the introduction of the redox-control concept into the field of olefin polymerization is described, and our approach to address the early issues and realize redox controlled olefin polymerization and copolymerization is demonstrated. Finally, some conclusions and perspectives are discussed.
1 Introduction
2 The Concept of Redox Control in Polymerization
3 Early Work on Redox Control in Olefin Polymerization
4 Our Approach to Realize Redox-Controlled Olefin (Co)Polymerization
5 Conclusions and Perspectives
-
References and Notes
- 2 Braunschweig H, Breitling FM. Coord. Chem. Rev. 2006; 250: 2691
- 3a Johnson LK, Killian CM, Brookhart M. J. Am. Chem. Soc. 1995; 117: 6414
- 3b Guan Z, Cotts PW, McCord EF, McLain SJ. Science 1999; 283: 2059
- 3c Chen CL, Luo S, Jordan RF. J. Am. Chem. Soc. 2008; 130: 12892
- 3d Chen CL, Luo S, Jordan RF. J. Am. Chem. Soc. 2010; 132: 5273
- 3e Chen CL, Jordan RF. J. Am. Chem. Soc. 2010; 132: 10254
- 3f Takano S, Takeuchi D, Osakada K, Akamatsu N, Shishido A. Angew. Chem. Int. Ed. 2014; 53: 9246
- 3g Dai SY, Sui XL, Chen CL. Angew. Chem. Int. Ed. 2015; 127: 10086
- 4a Camacho DH, Guan Z. Chem. Commun. 2010; 46: 7879
- 4b Guo LH, Chen CL. Sci. China Chem. 2015; 58: 1663
- 4c Guo LH, Sui XL, Dai SY, Chen CL. ACS Catal. 2016; 6: 428
- 5 Younkin TR, Connor EF, Henderson JI, Friedrich SK, Grubbs RH, Bansleben DA. Science 2000; 287: 460
- 6a Nakamura A, Anselment TM. J, Claverie J, Goodall B, Jordan RF, Mecking S, Rieger B, Sen A, Van Leeuwen PW. N. M, Nozaki K. Acc. Chem. Res. 2013; 46: 1438
- 6b Carrow BP, Nozaki K. Macromolecules 2014; 47: 2541
- 6c Ota Y, Ito S, Kuroda J, Okumura Y, Nozaki K. J. Am. Chem. Soc. 2014; 136: 11898
- 6d Nakano R, Nozaki K. J. Am. Chem. Soc. 2015; 137: 10934
- 6e Jian ZB, Moritz BC, Mecking S. J. Am. Chem. Soc. 2015; 137: 2836
- 6f Jian ZB, Mecking S. Angew. Chem. Int. Ed. 2015; 54: 15845
- 6g Zhang YL, Cao YC, Leng XB, Chen C, Huang Z. Organometallics 2014; 33: 3738
- 6h Sui XL, Dai SY, Chen CL. ACS Catal. 2015; 5: 5932
- 7 Arriola DJ, Carnahan EM, Hustad PD, Kuhlman RL, Wenzel TT. Science 2006; 312: 714
- 8a Iwashita A, Chan MC. W, Makio H, Fujita T. Catal. Sci. Technol. 2014; 4: 599
- 8b Liu CC, Chan MC. W. Acc. Chem. Res. 2015; 48: 1580
- 8c Weberski MP, Chen C, Delferro M, Zuccaccia C, Macchioni A, Marks TJ. Organometallics 2012; 31: 3773
- 8d Stephenson CJ, McInnis JP, Chen C, Weberski MP. Jr, Motta A, Delferro M, Marks TJ. ACS Catal. 2014; 4: 999
- 9a Delferro M, Marks TJ. Chem. Rev. 2011; 111: 2450
- 9b Weberski MP, Chen CL, Delferro M, Marks TJ. Chem. Eur. J. 2012; 18: 10715
- 9c Radlauer MR, Buckley AK, Henling LM, Agapie T. J. Am. Chem. Soc. 2013; 135: 3784
- 9d Takeuchi D, Chiba Y, Takano S, Osakada K. Angew. Chem. Int. Ed. 2013; 52: 12536
- 9e Zhu L, Fu ZS, Pan HJ, Feng W, Chen CL, Fan ZQ. Dalton Trans. 2014; 2900
- 9f Wang RK, Sui XL, Pang WM, Chen CL. ChemCatChem 2015; 8: 434
- 10 Chen M, Yang BP, Chen CL. Angew. Chem. Int. Ed. 2015; 54: 15520
- 11 Gregson CK. A, Gibson VC, Long NJ, Marshall EL, Oxford PJ, White AJ. P. J. Am. Chem. Soc. 2006; 128: 7410
- 12a Broderick EM, Guo N, Wu T, Vogel CS, Xu C, Sutter J, Miller JT, Meyer K, Cantat T, Diaconescu PL. Chem. Commun. 2011; 47: 9897
- 12b Broderick EM, Guo N, Vogel CS, Xu C, Sutter J, Miller JT, Mehrkhodavandi MP, Diaconescu PL. J. Am. Chem. Soc. 2011; 133: 9278
- 13 Wang X, Thevenon A, Brosmer JL, Yu I, Khan SI, Mehrkhodavandi P, Diaconescu PL. J. Am. Chem. Soc. 2014; 136: 11264
- 14a Biernesser AB, Li B, Byers JA. J. Am. Chem. Soc. 2013; 135: 16553
- 14b Manna CM, Kaur A, Yablon LM, Haeffner F, Li B, Byers JA. J. Am. Chem. Soc. 2015; 137: 14232
- 15 Brown LA, Rhinehart JL, Long BK. ACS Catal. 2016; 5: 6057
- 16a Sauer A, Buffet JC, Spaniol TP, Nagae H, Mashima K, Okuda J. ChemCatChem 2013; 5: 1088
- 16b Fang YY, Gong WJ, Shang XJ, Li HX, Gao J, Lang JP. Dalton Trans. 2014; 8282
- 17a Gibson VC, Halliwell CM, Long NJ, Oxford PJ, Smith AM, White AJ. P, Williams DJ. Dalton Trans. 2003; 918
- 17b Gibson VC, Gregson CK. A, Halliwell CM, Long NJ, Oxford PJ, White AJ. P, Williams DJ. J. Organomet. Chem. 2005; 690: 6271
- 18 Gibson VC, Long NJ, Oxford PJ, White AJ. P, Williams DJ. Organometallics 2006; 25: 1932
- 19 Chen C, Anselment TM. J, Frohlich R, Rieger B, Kehr G, Erker G. Organometallics 2011; 30: 5248
- 20 Guironnet D, Roesle P, Runzi T, Gottker-Schnetmann I, Mecking S. J. Am. Chem. Soc. 2009; 131: 422
- 21 Chen M, Zou WP, Cai ZG, Chen CL. Polym. Chem. 2015; 6: 2669
- 22 Anderson WC. Jr, Rhinehart JL, Tennyson AG, Long BK. J. Am. Chem. Soc. 2016; 138: 774
- 23 Gladysz JA, Ball ZT, Bertrand G, Blum SA, Dong VM, Dorta R, Hahn FE, Humphrey MG, Jones WD, Klosin J, Manners I, Marks TJ, Mayer JM, Rieger B, Ritter JC, Sattelberger AP, Schomaker JM, Yam VW.-W. Organometallics 2012; 31: 1