Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2016; 27(07): 1056-1060
DOI: 10.1055/s-0035-1561378
DOI: 10.1055/s-0035-1561378
cluster
Synthesis of Supramolecular Iridium Catalysts and Their Use in Enantioselective Visible-Light-Induced Reactions
Further Information
Publication History
Received: 21 December 2015
Accepted after revision: 20 January 2016
Publication Date:
24 February 2016 (online)
Abstract
Iridium complexes were prepared which are covalently linked via a bipyridine ligand to a chiral octahydro-1H-4,7-methanoisoindol-1-one skeleton. The skeleton allows for two-point hydrogen bonding to prochiral lactams, which can be processed in iridium-catalyzed photochemical reactions. Attempts to use the iridium complexes in reactions, which typically involve photoinduced electron transfer, failed to provide the desired enantioselectivity. If employed as triplet sensitizers the complexes showed an improved performance and moderate enantioselectivities (up to 29% ee) were achieved in a photochemical epoxide rearrangement.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1561378.
- Supporting Information
Primary Data
- for this article are available online at http://www.thieme-connect.com/products/ejournals/journal/10.1055/s-00000083 and can be cited using the following DOI: 10.4125/pd0075th.
- Primary Data
-
References and Notes
- 1a Ischay MA, Anzovino ME, Du J, Yoon TP. J. Am. Chem. Soc. 2008; 130: 12886
- 1b Nicewicz DA, MacMillan DW. C. Science 2008; 322: 77
- 2a Schultz DM, Yoon TP. Science 2014; 343: 1239176/1
- 2b Xi Y, Yi H, Lei A. Org. Biomol. Chem. 2013; 11: 2387
- 2c Reckenthäler M, Griesbeck AG. Adv. Synth. Catal. 2013; 355: 2727
- 2d Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 2e Zeitler K. Angew. Chem. Int. Ed. 2009; 48: 9785
- 3a Lu Z, Yoon TP. Angew. Chem. Int. Ed. 2012; 51: 10329
- 3b Zou Y.-Q, Duan S.-W, Meng X.-G, Hu X-Q, Gao S, Chen J.-R, Xiao W.-J. Tetrahedron 2012; 68: 6914
- 3c Farney EP, Yoon TP. Angew. Chem. Int. Ed. 2014; 53: 793
- 4a Brimioulle R, Lenhart D, Maturi MM, Bach T. Angew. Chem. Int. Ed. 2015; 54: 3872
- 4b Meggers E. Chem. Commun. 2015; 51: 3290
- 5a Huo H, Shen X, Wang C, Zhang L, Röse P, Chen L.-A, Harms K, Marsch M, Hilt G, Meggers E. Nature (London, U.K.) 2014; 515: 100
- 5b Huo H, Wang C, Harms K, Meggers E. J. Am. Chem. Soc. 2015; 137: 9551
- 5c Wang C, Qin J, Shen X, Riedel R, Harms K, Meggers E. Angew. Chem. Int. Ed. 2016; 55: 685
- 6a Hamada T, Ishida H, Usui S, Watanabe Y, Tsumura K, Ohkubo K. J. Chem. Soc., Chem. Commun. 1993; 909
- 6b Ohkubo K, Hamada T, Ishida H. J. Chem. Soc., Chem. Commun. 1993; 1423
- 7a Dydio P, Reek JN. H. Chem. Sci. 2014; 5: 2135
- 7b Lindbäck E, Dawaigher S, Wärnmark K. Chem. Eur. J. 2014; 20: 13432
- 7c Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen PW. N. M. Chem. Soc. Rev. 2014; 43: 1660
- 7d Carboni S, Gennari C, Pignatoro L, Piarulli U. Dalton Trans. 2011; 40: 4355
- 8a Frost JR, Huber SM, Breitenlechner S, Bannwarth C, Bach T. Angew. Chem. Int. Ed. 2015; 54: 691
- 8b Zhong F, Pöthig A, Bach T. Chem. Eur. J. 2015; 21: 10310
- 9 Fackler P, Berthold C, Voss F, Bach T. J. Am. Chem. Soc. 2010; 132: 15911
- 10a Bauer A, Westkämper F, Grimme S, Bach T. Nature (London, U.K.) 2005; 436: 1139
- 10b Müller C, Bauer A, Bach T. Angew. Chem. Int. Ed. 2009; 48: 6640
- 10c Müller C, Bauer A, Maturi MM, Cuquerella MC, Miranda MA, Bach T. J. Am. Chem. Soc. 2011; 133: 16689
- 10d Brimioulle R, Bach T. Science 2013; 342: 840
- 10e Alonso R, Bach T. Angew. Chem. Int. Ed. 2014; 53: 4368
- 11 Brotschi C, Mathis G, Leumann CJ. Chem. Eur. J. 2005; 11: 1911
- 12a Sonogashira K, Tohda Y, Hagihara N. Tetrahedron Lett. 1975; 16: 4467
- 12b Sonogashira K In Comprehensive Organic Synthesis . Vol. 3. Trost B. Pergamon Press; Oxford: 1991: 521-549
- 12c Sonogashira K In Metal-Catalyzed Cross-Coupling Reactions . Diederich F, Stang PJ. Wiley-VCH; Weinheim: 1998: 203-229
- 13a Chinchilla R, Nájera C. Chem. Soc. Rev. 2011; 40: 5084
- 13b Chinchilla R, Nájera C. Chem. Rev. 2007; 107: 874
- 14a Voss F, Bach T. Synlett 2010; 1493
- 14b Voss F, Vogt F, Herdtweck E, Bach T. Synthesis 2011; 961
- 15 Lowry MS, Goldsmith JI, Slinker JD, Rohl R, Pascal RA, Malliaras GG, Bernhard S. Chem. Mater. 2005; 17: 5712
- 16 Slinker JD, Gorodetsky AA, Lowry MS, Wang J, Parker S, Rohl R, Bernhard S, Malliaras GG. J. Am. Chem. Soc. 2004; 126: 2763
- 17a Narayanam JM. R, Tucker JW, Stephenson CR. J. J. Am. Chem. Soc. 2009; 131: 8756
- 17b Tucker JW, Nguyen JD, Narayanam JM. R, Krabbe SW, Stephenson CR. J. Chem. Commun. 2010; 46: 4985
- 18 Flynn DL, Zelle RE, Grieco PA. J. Org. Chem. 1983; 48: 2424
- 19 Heller ST, Natarajan SR. Org. Lett. 2006; 8: 2675
- 20 Sevenard DV, Vorobyev M, Sosnovskikh VY, Wessel H, Kazakova O, Vogel V, Shevchenko NE, Nenajdenko VG, Lork E, Röschenthaler G.-V. Tetrahedron 2009; 65: 7538
- 21 Cismesia MA, Yoon TP. Chem. Sci. 2015; 6: 5426
- 22 Wang L, Su Y, Xu X, Zhang W. Eur. J. Org. Chem. 2012; 6606
- 23 Maturi MM, Pöthig A, Bach T. Aust. J. Chem. 2015; 68: 1682
- 24 Experimental Procedure for the Enantioselective Rearrangement of rac-13 To a solution of 10.0 mg (46.0 μmol, 1.0 equiv) 5-methoxy-3′,3′-dimethylspiro[indoline-3,2′-oxiran]-2-one (rac-13)23 in 4.6 mL degassed CH2Cl2, 2.72 mg (2.3 μmmol, 0.05 equiv), Ir cat. 5a was added, and the reaction mixture was irradiated for 2.5 h at –75 °C. After evaporation of the solvent, the crude product was purified by column chromatography (SiO2, 2.5 × 4 cm, pentane–EtOAc = 2:1 → 1:1) to obtain 9.3 mg (93%, 29% ee) (S)-3-acetyl-5-methoxy-3-methylindolin-2-one (14)23 as a colorless solid. 1H NMR (360 MHz, CDCl3, 300 K): δ = 7.79 (br s, 1 H, NH), 6.87 (d, 3 J = 8.4 Hz, 1 H, C7H), 6.82 (dd, 3 J = 8.4 Hz, 4 J = 2.5 Hz, 1 H, C6H), 6.73 (d, 4 J = 2.5 Hz, 1 H, C4H), 3.77 (s, 3 H, OCH3), 2.05 (s, 3 H, COCH3), 1.59 (s, 3 H, CH3) ppm. 13C NMR (125 MHz, CDCl3, 300 K): δ = 200.9 (s, COCH3), 177.6 (s, C2), 156.4 (s, C5), 134.0 (s, C7a), 131.4 (s, C3a), 114.2 (d, C6), 110.7 (d, C7), 110.6 (d, C4), 62.9 (s, C3), 55.9 (q, OCH3), 26.2 (q, COCH3), 19.1 (q, CH3) ppm.
- 25 Maturi MM, Wenninger M, Alonso R, Bauer A, Pöthig A, Riedle E, Bach T. Chem. Eur. J. 2013; 19: 7461
- 26 Maturi MM, Bach T. Angew. Chem. Int. Ed. 2014; 53: 7661
Recent reviews:
Recent reviews:
For previous work on chiral ruthenium complexes in enantioselective photochemistry, see:
For recent reviews on supramolecular and substrate-specific catalysis, see:
Recent work:
Selected contributions:
Additional reviews:
For related Sonogashira cross-coupling reactions, see: