RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2016; 27(07): 1047-1050
DOI: 10.1055/s-0035-1561403
DOI: 10.1055/s-0035-1561403
cluster
Anion-Stoichiometry-Dependent Selectivity Enhancement in Ion-Paired Chiral Ligand–Palladium Complex Catalyzed Enantioselective Allylic Alkylation
Weitere Informationen
Publikationsverlauf
Received: 30. Januar 2016
Accepted: 17. Februar 2016
Publikationsdatum:
07. März 2016 (online)
Abstract
The ratio of chiral Brønsted acid to ammonium–phosphine hybrid ligand in the in situ preparation of ion-paired chiral ligands was found to have a notable effect on the stereocontrolling ability of the corresponding palladium complex. The use of supramolecular palladium complexes generated from palladium metal, ammonium phosphine, and a chiral phosphoric acid in a ratio of 1:2:3 enabled an excellent level of enantiocontrol in the catalytic asymmetric allylation of α-nitrocarboxylates with a functionalized allylic carbonate.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1561403.
- Supporting Information
-
References and Notes
- 1 Supramolecular Catalysis . van Leeuwen PW. N. M. Wiley-VCH; Weinheim: 2008
- 2a Wilkinson MJ, van Leeuwen PW. N. M, Reek JN. H. Org. Biomol. Chem. 2005; 3: 2371
- 2b Breit B. Angew. Chem. Int. Ed. 2005; 44: 6816
- 2c Reetz MT. Angew. Chem. Int. Ed. 2008; 47: 2556
- 2d Meeuwissen J, Reek JN. H. Nat. Chem. 2010; 2: 615
- 2e Carboni S, Gennari C, Pignataro L, Piarulli U. Dalton Trans. 2011; 40: 4355
- 2f Bellini R, van der Vlugt JI, Reek JN. H. Isr. J. Chem. 2012; 52: 613
- 2g Kirkorian K, Ellis A, Twyman LJ. Chem. Soc. Rev. 2012; 41: 6138
- 2h Kataev EA, Müller C. Tetrahedron 2014; 70: 137
- 2i Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen PW. N. M. Chem. Soc. Rev. 2014; 43: 1660
- 2j Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen PW. N. M. Chem. Soc. Rev. 2014; 43: 1734
- 2k Ohmatsu K, Ooi T. Tetrahedron Lett. 2015; 56: 2043
- 3 Uraguchi D, Ueki Y, Ooi T. Angew. Chem. Int. Ed. 2011; 50: 3681
- 4a Ohmatsu K, Ito M, Kunieda T, Ooi T. Nat. Chem. 2012; 4: 473
- 4b Ohmatsu K, Ito M, Kunieda T, Ooi T. J. Am. Chem. Soc. 2013; 135: 590
- 4c Ohmatsu K, Ito M, Ooi T. Chem. Commun. 2014; 50: 4554
- 4d Ohmatsu K, Hara Y, Ooi T. Chem. Sci. 2014; 5: 3645
- 4e Ohmatsu K, Imagawa N, Ooi T. Nat. Chem. 2014; 6: 47
- 4f Ohmatsu K, Kawai S, Imagawa N, Ooi T. ACS Catal. 2014; 4: 4304
- 5a Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
- 5b Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
- 6a Mukherjee S, List B. J. Am. Chem. Soc. 2007; 129: 11336
- 6b Jiang G, List B. Angew. Chem. Int. Ed. 2011; 50: 9471
- 7a Komanduri V, Krische MJ. J. Am. Chem. Soc. 2006; 128: 16448
- 7b Hamilton GL, Kang EJ, Mba M, Toste FD. Science 2007; 317: 496
- 7c Rueping M, Antonchick AP, Brinkmann C. Angew. Chem. Int. Ed. 2007; 46: 6903
- 7d Li C, Wang C, Villa-Marcos B, Xiao J. J. Am. Chem. Soc. 2008; 130: 14450
- 7e Li C, Villa-Marcos B, Xiao J. J. Am. Chem. Soc. 2009; 131: 6967
- 7f Zhao B, Du H, Shi Y. J. Org. Chem. 2009; 74: 8392
- 7g Campbell MJ, Toste FD. Chem. Sci. 2011; 2: 1369
- 7h Liao S, List B. Angew. Chem. Int. Ed. 2010; 49: 628
- 7i Jiang G, Halder R, Fang Y, List B. Angew. Chem. Int. Ed. 2011; 50: 9752
- 7j Rauniyar V, Wang ZJ, Burks HE, Toste FD. J. Am. Chem. Soc. 2011; 133: 8486
- 7k Jiang G, List B. Chem. Commun. 2011; 47: 10022
- 7l Rueping M, Koenigs RM. Chem. Commun. 2011; 47: 304
- 7m Barbazanges M, Augé M, Moussa J, Amouri H, Aubert C, Desmarets C, Fensterbank L, Gandon V, Malacria M, Ollivier C. Chem. Eur. J. 2011; 17: 13789
- 7n Zbieg JR, Yamaguchi E, McInturff EL, Krische MJ. Science 2012; 336: 324
- 7o Chai Z, Rainey TJ. J. Am. Chem. Soc. 2012; 134: 3615
- 7p McInturff EL, Yamaguchi E, Krische MJ. J. Am. Chem. Soc. 2012; 134: 20628
- 7q Mourad AK, Leutzow J, Czekelius C. Angew. Chem. Int. Ed. 2012; 51: 11149
- 7r Chen W, Hartwig JF. J. Am. Chem. Soc. 2013; 135: 2068
- 7s Augé M, Barbazanges M, Tran AT, Simonneau A, Elley P, Amouri H, Aubert C, Fensterbank L, Gandon V, Malacria M, Moussa J, Ollivier C. Chem. Commun. 2013; 49: 7833
- 7t Miura T, Nishida Y, Morimoto M, Murakami M. J. Am. Chem. Soc. 2013; 135: 11497
- 8 Sawamura M, Nakayama Y, Tang W.-M, Ito Y. J. Org. Chem. 1996; 61: 9090
- 9a Trost BM, Toste FD. J. Am. Chem. Soc. 2003; 125: 3090
- 9b Trost BM, Crawley ML. Chem. Eur. J. 2004; 10: 2237
- 9c Nemoto T, Fukuda T, Matsumoto T, Hitomi T, Hamada Y. Adv. Synth. Catal. 2005; 347: 1504
- 9d Gais H.-J, Bondarev O, Hetzer R. Tetrahedron Lett. 2005; 46: 6279
- 10 For a review on γ-functionalization of α,β-unsaturated carbonyl compounds, see: Green JR. Synlett 2012; 23: 1271
- 11 General Procedure for Asymmetric Allylation of Nitroester with Allylic Carbonate To a Schlenk flask were added Pd2(dba)3·CHCl3 (1.29 mg, 1.25 μmol), ammonium phosphine 1·HSO4 (2.8 mg, 5 μmol), chiral phosphoric acid 2b (5.1 mg, 7.5 μmol), and K2CO3 (1.4 mg, 0.010 mmol). The flask was degassed by alternating vacuum evacuation/Ar backfill. After the addition of toluene (1.0 mL), the resulting catalyst mixture was evacuated and refilled with Ar three times. The reaction flask was then warmed up to 30 °C, and nitroester 4a (25.1 mg, 0.10 mmol) and allylic carbonate 5 (30.2 mg, 0.12 mmol) were successively introduced. After stirring for 24 h at the same temperature, the reaction mixture was cooled to r.t. Filtration through the short silica gel pad with the aid of EtOAc and concentration of the filtrate were performed. The reaction mixture was purified by column chromatography on silica gel (hexane–EtOAc = 20:1 as eluent) to afford 6a (38.4 mg, 0.099 mmol, 99% yield, 98% ee) as a colorless liquid. Compound 6a: [α]D 24 –3.08 (c 1.0, CH3OH) for 99% ee. 1H NMR (400 MHz, CDCl3): δ = 7.34 (2 H, t, J = 2.3 Hz), 7.35–7.30 (3 H, m), 7.13 (1 H, dt, J = 15.2, 7.6 Hz), 7.16–7.11 (2 H, m), 6.64 (1 H, dt, J = 15.2, 1.5 Hz), 6.34 (2 H, t, J = 2.3 Hz), 3.65 (1 H, d, J = 14.4 Hz), 3.50 (1 H, d, J = 14.4 Hz), 3.03 (1 H, ddd, J = 15.5, 7.6, 1.5 Hz), 2.99 (1 H, ddd, J = 15.5, 7.6, 1.5 Hz), 1.48 (9 H, s). 13C NMR (151 MHz, CDCl3): δ = 164.6, 161.8, 142.6, 132.8, 130.1, 129.0, 128.3, 124.7, 119.4, 113.9, 95.7, 85.5, 40.3, 36.6, 27.8. IR (film): 2980, 1744, 1699, 1553, 1468, 1352, 1296, 1283, 1152, 743 cm–1. HRMS (ESI, +): m/z calcd for C21H24O5N2Na+ [M + Na]+: 407.1577; found: 407.1581. HPLC (OX3, hexane–2-PrOH = 10:1, flow rate = 0.5 mL/min, λ = 210 nm): t R (major) = 12.4 min; t R (minor) = 13.5 min.
For representative reviews on metal-catalyzed asymmetric allylic alkylations, see:
For the use of chiral phosphate ions in asymmetric Pd-catalyzed allylic alkylations, see:
For other selected reports on asymmetric transition-metal catalysis using chiral phosphate, see:
For selected references of Pd-catalyzed asymmetric alkylations with α,β-unsaturated carbonyl compounds, see: