Synlett 2016; 27(07): 1068-1072
DOI: 10.1055/s-0035-1561843
cluster
© Georg Thieme Verlag Stuttgart · New York

Asymmetric Sulfa-Michael Addition of α,β-Unsaturated Esters/Amides Using a Chiral N-Heterocyclic Carbene as a Noncovalent Organocatalyst

Pengfei Yuan
Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen 518055, P. R. of China   Email: chenja@pkusz.edu.cn   Email: huangyong@pkusz.edu.cn
,
Sixuan Meng
Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen 518055, P. R. of China   Email: chenja@pkusz.edu.cn   Email: huangyong@pkusz.edu.cn
,
Jiean Chen*
Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen 518055, P. R. of China   Email: chenja@pkusz.edu.cn   Email: huangyong@pkusz.edu.cn
,
Yong Huang*
Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen 518055, P. R. of China   Email: chenja@pkusz.edu.cn   Email: huangyong@pkusz.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 14 December 2015

Accepted after revision: 26 February 2015

Publication Date:
08 March 2016 (online)


Abstract

We report an asymmetric sulfa-Michael reaction of α,β-unsaturated amides and esters using a chiral N-heterocyclic carbene as the HOMO-raising organocatalyst. We discovered an interesting correlation between 13C NMR shifts of substrates and ee of their products. More electron-deficient Michael acceptors afforded higher enantioselectivity.

Supporting Information

 
  • References and Notes


    • For comprehensive overviews on NHC-catalyzed reactions, see:
    • 1a Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
    • 1b Nair V, Menon RS, Biju AT, Sinu CR, Paul RR, Jose A, Sreekumar V. Chem. Soc. Rev. 2011; 40: 5336
    • 1c Bugaut X, Glorius F. Chem. Soc. Rev. 2012; 41: 3511
    • 1d Grossmann A, Enders D. Angew. Chem. Int. Ed. 2012; 51: 314
    • 1e Izquierdo J, Hutson GE, Cohen DT, Scheidt KA. Angew. Chem. Int. Ed. 2012; 51: 11686
    • 1f Vora HU, Wheeler P, Rovis T. Adv. Synth. Catal. 2012; 354: 1617
    • 1g Sarkar SD, Biswas A, Samanta RC, Studer A. Chem. Eur. J. 2013; 19: 4664
    • 1h Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307

      For a recent review on acyl anion free reactions, see:
    • 2a Ryan SJ, Candish L, Lupton DW. Chem. Soc. Rev. 2013; 42: 4906

    • For representative examples, see:
    • 2b Sun X, Ye S, Wu J. Eur. J. Org. Chem. 2006; 4787

    • Selected examples for halide:
    • 2c Ryan SJ, Candish L, Lupton DW. J. Am. Chem. Soc. 2011; 133: 4694
    • 2d Ryan SJ, Stasch A, Paddon-Row MN, Lupton DW. J. Org. Chem. 2012; 77: 1113
    • 2e Candish L, Lupton DW. J. Am. Chem. Soc. 2013; 135: 58
    • 2f Zhang YR, He L, Wu X, Shao PL, Ye S. Org. Lett. 2008; 10: 277
    • 2g Huang XL, He L, Shao PL, Ye S. Angew. Chem. Int. Ed. 2009; 48: 192
    • 2h Zhang HM, Gao ZH, Ye S. Org. Lett. 2014; 16: 3079
    • 2i Hao L, Du Y, Lv H, Chen X, Jiang H, Shao Y, Chi YR. Org. Lett. 2012; 14: 2154
    • 2j Cheng J, Huang Z, Chi YR. Angew. Chem. Int. Ed. 2013; 52: 8592
    • 2k Fu Z, Xu J, Zhu T, Leong WW, Chi YR. Nat. Chem. 2013; 5: 835
    • 2l Chauhan P, Enders D. Angew. Chem. Int. Ed. 2014; 53: 1485
    • 3a Kim Y.-J, Streitwieser A. J. Am. Chem. Soc. 2002; 124: 5757
    • 3b Amyes TL, Diver ST, Richard JP, Rivas FM, Toth K. J. Am. Chem. Soc. 2004; 126: 4366
    • 3c Massey RS, Collett CJ, Lindsay AG, Smith AD, O’Donoghue AC. J. Am. Chem. Soc. 2012; 134: 20421

    • Selected examples for utilizing NHC as chiral Brønsted base:
    • 3d Phillips EM, Riedrich M, Scheidt KA. J. Am. Chem. Soc. 2010; 132: 13179
    • 3e Boddaert T, Coquerel Y, Rodriguez J. Chem. Eur. J. 2011; 17: 2266
    • 4a Chen J, Huang Y. Nat. Commun. 2014; 5: 3437
    • 4b Chen J, Meng S, Wang L, Tang H, Huang Y. Chem. Sci. 2015; 6: 4184
    • 4c Wang L, Chen J, Huang Y. Angew. Chem. Int. Ed. 2015; 54: 15414
    • 5a Nishimura K, Ono M, Nagaoka Y, Tomioka K. J. Am. Chem. Soc. 1997; 119: 12974
    • 5b Emori E, Arai T, Sasai H, Shibasaki M. J. Am. Chem. Soc. 1998; 120: 4043
    • 5c Leow D, Lin S, Chittimalla SK, Fu X, Tan CH. Angew. Chem. Int. Ed. 2008; 47: 5641
    • 5d Wang R, Liu J, Xu J. Adv. Synth. Catal. 2015; 357: 159

      Selected papers for sulfa-Michael reactions of oxazolidinone derivatives:
    • 6a Kanemasa S, Oderaotoshi Y, Wada E. J. Am. Chem. Soc. 1999; 121: 8675
    • 6b Abe AM, Sauerland SJ, Koskinen AM. J. Org. Chem. 2007; 72: 5411
    • 6c Zu L, Wang J, Li H, Xie H, Jiang W, Wang W. J. Am. Chem. Soc. 2007; 129: 1036
    • 6d Liu Y, Sun B, Wang B, Wakem M, Deng L. J. Am. Chem. Soc. 2009; 131: 418
    • 6e Dai L, Yang H, Chen F. Eur. J. Org. Chem. 2011; 5071
    • 6f Chen W, Jing Z, Chin KF, Qiao B, Zhao Y, Yan L, Tan C.-H, Jiang Z. Adv. Synth. Catal. 2014; 356: 1292
    • 6g Breman AC, Telderman SE, van Santen RP, Scott JI, van Maarseveen JH, Ingemann S, Hiemstra H. J. Org. Chem. 2015; 80: 10561
    • 7a Hammett LP. J. Am. Chem. Soc. 1937; 59: 96
    • 7b Hansch C, Leo A, Taft RW. Chem. Rev. 1991; 91: 165
    • 7c Jensen KH, Sigman MS. Angew. Chem. Int. Ed. 2007; 46: 4748
    • 7d Sigman MS, Miller JJ. J. Org. Chem. 2009; 74: 7633
    • 7e Gustafson JL, Sigman MS, Miller SJ. Org. Lett. 2010; 12: 2794
  • 8 General Procedure for the NHC-Catalyzed Sulfa-Michael Addition Reaction NHC precursor 4a (4.2 mg, 0.01 mmol) and oven-dried 4 Å MS (100 mg) were mixed in dry toluene (0.6 mL) in a 10 mL test tube. The reaction vessel was degassed and back-filled with argon three times before LiHMDS (1 M in THF–ethylbenzene, 10 μL, 0.01 mmol) was slowly added. The mixture was stirred at r.t. for 30 min and another 30 min at –78 °C. Thiol 1 (0.2 mmol) was slowly added, and the mixture was stirred for 30 min at –78 °C. A solution of substrate 2 (0.1 mmol) in toluene (0.6 mL) was slowly added over 30 min. The reaction was stirred at –78 °C for 48 h. The reaction was quickly filtered through a plug of silica gel and concentrated. The residue was purified by silica gel flash column chromatography (eluent: hexane–EtOAc = 50:1) to give product 3. Compound 3aa: 27 mg; 96% yield; colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.51–7.19 (m, 8 H), 7.10 (d, J = 7.7 Hz, 2 H), 3.97–3.77 (m, 2 H), 3.36–3.18 (m, 1 H), 2.87 (dd, J = 15.4, 6.5 Hz, 1 H), 2.73 (dd, J = 15.4, 7.9 Hz, 1 H), 1.43 (d, J = 6.8 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 169.87 (s), 150.58 (s), 138.08 (s), 129.43 (s), 128.87 (s), 128.58 (s), 127.10 (s), 125.90 (s), 121.54 (s), 42.09 (s), 36.05 (s), 35.38 (s), 21.34 (s). Chiral HPLC (AD-H, 5% EtOH in hexanes, 1.0 mL/min, 210 nm): t R (major) = 7.4 min, t R (minor) = 6.4 min, 67% ee. HRMS (ESI+): m/z calcd for C17H18O2NaS+ [M + Na]+: 309.0925; found: 309.0920.