Synlett 2017; 28(11): 1336-1340
DOI: 10.1055/s-0036-1558970
letter
© Georg Thieme Verlag Stuttgart · New York

Mechanochemical Grinding Diels–Alder Reaction: Highly Efficient and Rapid Access to Bi-, Tri-, and Tetracyclic Systems

Jyoti Agarwal
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India   Email: rkpedfcy@iitr.ac.in   Email: ramakpeddinti@gmail.com
,
Rashmi Rani
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India   Email: rkpedfcy@iitr.ac.in   Email: ramakpeddinti@gmail.com
,
Rama Krishna Peddinti*
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India   Email: rkpedfcy@iitr.ac.in   Email: ramakpeddinti@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 07 January 2017

Accepted after revision: 22 February 2017

Publication Date:
15 March 2017 (online)


Abstract

Grinding of various electron-deficient dienophiles with diverse dienes in a pestle and mortar for 1–15 minutes afforded the corresponding Diels–Alder adducts in quantitative yields under catalyst-free and solvent-free conditions, without the necessity for any purification steps.

Supporting Information

 
  • References and notes

  • 3 Sokolov N, Friščić T, MacGillivray LR. J. Am. Chem. Soc. 2006; 128: 2806-2806
    • 4a Etter MC, Frankenbach GM, Adsmond DA. Mol. Cryst. Liq. Cryst. 1990; 187: 25-25
    • 4b Smolka T, Sustmann R, Boese R. J. Prakt. Chem. 1999; 341: 378-378
    • 4c Morimoto M, Kobatake S, Irie M. Chem. Commun. 2008; 335-335
    • 5a Baird C. Environmental Chemistry . W. H. Freeman; New York: 1999. 2nd ed.
    • 5b Green Chemical Syntheses and Processes, ACS Symposium Series 767. Anastas P, Heine LG, Williamson TC. American Chemical Society; Washington DC: 2000
    • 5c Matlack AS. Introduction to Green Chemistry . Marcel Dekker; New York: 2001
    • 5d Lancaster M. Green Chemistry: An Introductory Text . Royal Society of Chemistry; Cambridge: 2002
    • 8a Fringuelli F, Taticchi A. The Diels–Alder Reaction: Selected Practical Methods . Wiley; Chichester: 2009
    • 8b Cycloaddition Reactions in Organic Synthesis . Kobayashi S, Jørgensen KA. Wiley-VCH; Weinheim: 2002
    • 10a Abdelkafi H, Evanno L, Deville A, Dubost L, Chiaroni A, Nay B. Eur. J. Org. Chem. 2011; 2789-2789
    • 10b Bautista R, Bernal P, Montiel LE, Tamariz J. Synthesis 2011; 929-929
  • 12 Silvero G, Arévalo MJ, Bravo JL, Ávalos M, Jiménez JL, López I. Tetrahedron 2005; 61: 7105-7105
  • 13 López I, Silvero G, Arévalo MJ, Babiano R, Palacios JC, Bravo JL. Tetrahedron 2007; 63: 2901-2901
  • 14 Ogasawara Y, Uchida S, Yamaguchi K, Mizuno N. Chem. Eur. J. 2009; 15: 4343-4343
  • 15 Berson JA. J. Am. Chem. Soc. 1953; 75: 1240-1240
  • 16 Cava MP, McGrady J. J. Org. Chem. 1975; 40: 72-72
  • 17 Naito K, Rickborn B. J. Org. Chem. 1980; 45: 4061-4061
  • 18 Tsurusaki T, Sasamori N, Tokitoh N. Organometallics 2009; 28: 3604-3604
  • 19 Middleton WJ, Heckert E, Little EL, Krespan CG. J. Am. Chem. Soc. 1958; 80: 2783-2783
  • 20 Harjani JR, Singer RD, Garcia MT, Scammells PJ. Green Chem. 2009; 11: 83-83
  • 21 Goldschmidt Z, Genizi E. Tetrahedron Lett. 1987; 28: 4867-4867
  • 23 Huertas D, Florscher M, Dragojlovic V. Green Chem. 2009; 11: 91-91
  • 24 Zhang Z, Peng Z.-W, Hao M.-F, Gao J.-G. Synlett 2010; 2895-2895
  • 25 Choudhary G, Peddinti RK. Green Chem. 2011; 13: 276-276
  • 26 Choudhary G, Peddinti RK. Green Chem. 2011; 13: 3290-3290
  • 27 Method A: Solid–Liquid or Solid–Solid Reactant Combinations; General Procedure A mixture of the diene (1 mmol) and the dienophile (1 mmol) was subjected to hand grinding with a pestle and mortar for the time shown in Tables 1 and 2 to afford the corresponding products in quantitative yield. In the reactions of cyclopentadiene, 1.2 equiv of the diene was used. In most cases, product formation was observed by the change in color; with aryl maleimides, the yellow color of the initial reaction mixture changed to white, whereas with 1,3-diphenyl-2-benzofuran, the color of the mixture changed almost immediately from fluorescent green to white. 2-(4-Bromophenyl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3-dione (7b) White solid; yield: 317 mg (quant); mp 156 °C. 1H NMR (500 MHz, CDCl3): δ = 7.55 (dt, J = 2.5, 9.0 Hz, 2 H), 7.04 (dt, J = 2.5, 9.5 Hz, 2 H), 6.25 (t, J = 1.5 Hz, 2 H), 3.53–3.47 (m, 2 H), 3.43 (q, J = 1.5 Hz, 2 H), 1.79 (d, J = 9.0 Hz, 1 H), 1.61 (d, J = 9.0 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 176.3, 134.5, 132.1, 130.7, 128.1, 122.2, 52.1, 45.7, 45.4. 2-(4-Methoxyphenyl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3-dione (7d) White solid; yield: 170 mg (quant); mp 269 °C. 1H NMR (500 MHz, CDCl3): δ = 7.04 (d, J = 8.0 Hz, 2 H), 6.93 (d, J = 8.0 Hz, 2 H), 6.25 (s, 2 H), 3.80 (s, 3 H), 3.50 (s, 2 H), 3.41 (s, 2 H), 1.78 (d, J = 8.5 Hz, 1 H), 1.60 (d, J = 8.0 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 177.1, 159.4, 134.5, 127.8, 124.4, 114.4, 55.4, 52.2, 45.6, 45.4. Diethyl 1,4-Diphenyl-1,4-dihydro-1,4-epoxynaphthalene-2,3-dicarboxylate (18) White solid; yield: 440 mg (quant); mp 115 °C. 1H NMR (500 MHz, CDCl3): δ = 7.79 (d, J = 7.0 Hz, 4 H), 7.56 (dd, J = 3.0, 5.0 Hz, 2 H), 7.52–7.43 (m, 6 H), 7.18 (dd, J = 3.0, 5.0 Hz, 2 H), 4.23–4.12 (m, 4 H), 1.17 (t, J = 7.0 Hz, 6 H). 13C NMR (125 MHz, CDCl3): δ = 163.6, 153.7, 149.2, 133.2, 129.0, 128.4, 128.1, 125.9, 122.1, 94.0, 61.3, 13.8. Bicyclo[2.2.1]hept-5-ene-2,2,3,3-tetracarbonitrile (19) White solid; yield: 194 mg (quant); mp 217 °C. 1H NMR (500 MHz, CDCl3): δ = 6.52 (s, 2 H), 4.06 (s, 2 H), 2.25 (s, 2 H). 13C NMR (125 MHz, CDCl3): δ = 133.6, 111.9, 111.7, 110.9, 110.4, 107.9, 55.9, 46.7, 46.4. Bicyclo[2.2.2]oct-5-ene-2,2,3,3-tetracarbonitrile (21) White solid; yield: 208 mg (quant). 1H NMR (500 MHz, CDCl3): δ = 6.69 (s, 2 H), 3.55 (s, 2 H), 2.24 (d, J = 9.5 Hz, 2 H), 1.62 (d, J = 9.5 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 133.1, 111.7, 111.3, 107.9, 42.8, 39.1, 18.8.
  • 28 Method B: Liquid-Assisted Grinding; General Procedure A mixture of the appropriate diene (1 mmol), dienophile (1 mmol), and EtOAc (2–3 drops) was subjected to hand grinding with a pestle in a mortar for the time shown in Tables 1 and 2. Almost immediately, the color of the mixture changed from fluorescent-green or yellow to white. The EtOAc was removed under vacuum to afford the pure solid product in quantitative yield. 2-(4-Bromophenyl)-4,9-diphenyl-3a,4,9,9a-tetrahydro-1H-4,9-epoxybenzo[f]isoindole-1,3-dione (5b) White solid; yield: 521 mg (quant); mp 242 °C. 1H NMR (500 MHz, CDCl3): δ = 8.05 (d, J = 7.5 Hz, 4 H), 7.54 (t, J = 7.5 Hz, 4 H), 7.47 (d, J = 7.0 Hz, 2 H), 7.28–7.22 (m, 4 H), 7.05 (dd, J = 3.0, 5.0 Hz, 2 H), 6.43 (d, J = 8.5 Hz, 2 H), 4.26 (s, 2 H). 13C NMR (125 MHz, CDCl3): δ = 173.0, 144.0, 136.2, 132.1, 130.1, 128.8, 128.7, 128.3, 127.9, 127.1, 122.7, 120.8, 90.6, 54.3. 2-(4-Methoxyphenyl)-4,9-diphenyl-3a,4,9,9a-tetrahydro-1H-4,9-epoxybenzo[f]isoindole-1,3-dione (5d) White solid; yield: 473 mg (quant); mp 209 °C. 1H NMR (500 MHz, CDCl3): δ = 8.07 (d, J = 8.0 Hz, 4 H), 7.53 (t, J = 7.5 Hz, 4 H), 7.46 (t, J = 7.0 Hz, 2 H), 7.29–7.22 (m, 2 H), 7.06 (dd, J = 3.0, 5.0 Hz, 2 H), 6.79 (d, J = 8.5 Hz, 2 H), 6.42 (d, J = 9.0 Hz, 2 H), 4.24 (s, 2 H), 3.75 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 173.5, 159.5, 144.1, 136.3, 128.6, 128.5, 128.1, 127.5, 127.1, 123.7, 120.8, 114.2, 90.5, 55.3, 54.2. 1,4-Diphenyl-1,2,3,4-tetrahydro-1,4-epoxynaphthalene-2,3-dicarbonitrile (16) White solid; yield: 378 mg (quant). 1H NMR (500 MHz, CDCl3): δ = 7.84–7.79 (m, 2 H), 7.69–7.62 (m, 2 H), 7.60–7.59 (m, 6 H), 7.32–7.29 (m, 3 H), 7.15 (d, J = 7.0 Hz, 1 H), 3.87 (d, J = 4.5 Hz, 1 H), 3.54 (d, J = 4.0 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 144.1, 142.8, 134.1, 133.3, 129.6, 129.2, 129.1, 129.0, 125.8, 125.5, 121.8, 119.7, 117.1, 117.0, 90.7, 44.4, 43.0.