Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(11): 1295-1299
DOI: 10.1055/s-0036-1588141
DOI: 10.1055/s-0036-1588141
cluster
Enantioselective Synthesis of anti-β-Hydroxy-α-amino Esters via an Organocatalyzed Decarboxylative Aldol Reaction
Further Information
Publication History
Received: 13 December 2016
Accepted: 09 January 2017
Publication Date:
03 February 2017 (online)
Abstract
The first enantioselective decarboxylative aldol addition with α-amido-substituted malonic acid half oxyesters (MAHOs) is described. The combined use of a newly designed bifunctional sulfonamide catalyst with pentafluorobenzoic acid as an additive afforded the β-hydroxy-α-amino acid derivatives in moderate to high yields and with high enantioselectivities.
Key words
bifunctional organocatalyst - malonic acid half oxyester (MAHO) - cinchona alkaloid - sulfonamide - β-hydroxy-α-amino acidSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588141.
- Supporting Information
-
References and Notes
- 1a Review: Zhang Y, Farrants H, Li X. Chem. Asian J. 2014; 9: 1752-1752
- 1b Kobayashi J, Ishibashi M, Nakamura H, Hirata Y, Yamasu T, Sasaki T, Ohizumi Y. Experientia 1988; 44: 800-800
- 1c Nakada N, Shimada H, Hirata T, Aoki Y, Kamiyama T, Watanabe J, Arisawa M. Antimicrob. Agents Chemother. 1993; 37: 2656-2656
- 1d Fenteany G, Schreiber SL. J. Biol. Chem. 1998; 273: 8545-8545
- 1e Chaudhari PN, Wani KS, Chaudhari BL, Chincholkar SB. Appl. Biochem. Biotechnol. 2009; 158: 231-231
- 1f Nakamura H, Tsukano C, Yasui M, Yokouchi S, Igarashi M, Takemoto Y. Angew. Chem. Int. Ed. 2015; 54: 3136-3136
- 2a Noyori R, Ikeda T, Ohkuma T, Widhalm M, Kitamura M, Takaya H, Akutagawa S, Sayo N, Saito N. J. Am. Chem. Soc. 1989; 111: 9134-9134
- 2b Makino K, Goto T, Hiroki Y, Hamada Y. Angew. Chem. Int. Ed. 2004; 43: 882-882
- 2c Hamada Y, Koseki Y, Fujii T, Maeda T, Hibino T, Makino K. Chem. Commun. 2008; 46: 6206-6206
- 2d Seashore-Ludlow B, Villo P, Häcker C, Somfai P. Org. Lett. 2010; 12: 5274-5274
- 3a Qiu L, Guo X, Jing C, Ma C, Liu S, Hu W. Chem. Commun. 2016; 52: 11831-11831
- 3b Qian Y, Jing C, Liu S, Hu W. Chem. Commun. 2013; 49: 2700-2700
- 4a Kobayashi J, Nakamura M, Mori Y, Yamashita Y, Kobayashi S. J. Am. Chem. Soc. 2004; 126: 9192-9192
- 4b Chen X, Zhu Y, Qiao Z, Xie M, Lin L, Liu X, Feng X. Chem. Eur. J. 2010; 16: 10124-10124
- 4c Weidner K, Sun Z, Kumagai N, Shibasaki M. Angew. Chem. Int. Ed. 2015; 54: 6236-6236
- 5a Ooi T, Taniguchi M, Kameda M, Maruoka K. Angew. Chem. Int. Ed. 2002; 41: 4542-4542
- 5b Ooi T, Kameda M, Taniguchi M, Maruoka K. J. Am. Chem. Soc. 2004; 126: 9685-9685
- 5c Thayumanavan R, Tanaka F, Barbas CF. III. Org. Lett. 2004; 6: 3541-3541
- 6a Singjunla Y, Baudoux J, Rouden J. Org. Lett. 2013; 15: 5770-5770
- 6b Baudoux J, Lefebvre P, Legay R, Lasne M.-C, Rouden J. Green Chem. 2010; 12: 252-252
- 7 Blaquiere N, Shore DG, Rousseaux S, Fagnou F. J. Org. Chem. 2009; 74: 6190-6190
- 8a Review: Nakamura S. Org. Biomol. Chem. 2014; 12: 394-394
- 8b Orlandi S, Benaglia M, Cozzi F. Tetrahedron Lett. 2004; 45: 1747-1747
- 8c Magdziak D, Lalic G, Lee HM, Fortner KC, Aloise AD, Shair MD. J. Am. Chem. Soc. 2005; 127: 7284-7284
- 8d Hara N, Nakamura S, Funahashi Y, Shibata N. Adv. Synth. Catal. 2011; 353: 2976-2976
- 8e Li X.-J, Xiong H.-Y, Hua M.-Q, Nie J, Zheng Y, Ma J.-A. Tetrahedron Lett. 2012; 53: 2117-2117
- 8f Zhong F, Yao W, Dou X, Lu Y. Org. Lett. 2012; 14: 4018-4018
- 8g Bae HY, Sim JH, Lee J.-W, List B, Song CE. Angew. Chem. Int. Ed. 2013; 52: 12143-12143
- 8h Duan Z, Han J, Qian P, Zhang Z, Yi W, Yi P. Beilstein J. Org. Chem. 2014; 10: 969-969
- 8i Wei A.-J, Nie J, Zheng Y, Ma J.-A. J. Org. Chem. 2015; 80: 3766-3766
- 8j Bew SP, Stephenson GR, Rouden J, Ashford P.-A, Bourane M, Charvet A, Dalstein VM. D, Jauseau R, Hiatt-Gipson GD, Martinez-Lozano LA. Adv. Synth. Catal. 2015; 357: 1245-1245
- 8k Xu F, Xu J, Hu Y, Lin X, Wu Q. RSC Adv. 2016; 6: 7682-7682
- 8l Ren N, Nie J, Ma J.-A. Green Chem. 2016; 18: 6609-6609
- 9 Saadi J, Wennemers H. Nat. Chem. 2016; 8: 276-276
- 10a Okino T, Hoashi Y, Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672-12672
- 10b Kobayashi Y, Taniguchi Y, Hayama N, Inokuma T, Takemoto Y. Angew. Chem. Int. Ed. 2013; 52: 11114-11114
- 10c Hayama N, Azuma T, Kobayashi Y, Takemoto Y. Chem. Pharm. Bull. 2016; 64: 704-704
- 11 Cinchona Alkaloids in Synthesis and Catalysis: Ligands, Immobilization and Organocatalysis. Song CE. Wiley-VCH; Weinheim: 2009. and references cited therein
- 12 Ohshima T, Iwasaki T, Maegawa Y, Yoshiyama A, Mashima K. J. Am. Chem. Soc. 2008; 130: 2944-2944
- 13 Representative Procedure for the Enantioselective Decarboxylative Aldol Reaction To a stirred solution of 1h (0.05 mmol) in dry CPME (0.5–1.0 mL) at 10–15 °C, was added o-nitrobenzaldehyde (37.8 mg, 0.25 mmol), catalyst 11 (5.2 mg, 20 mol%), and pentafluorobenzoic acid (2.1 mg, 20 mol%). The mixture was stirred at the same temperature for 48 h, before being directly purified by silica gel column chromatography (hexane–EtOAc) to give the anti -β-hydroxy-α-amino acid 13a. Phenyl (2S,3S)-2-[(9H-Fluoren-9-yl)methoxycarbonyl] amino-3-hydroxy-3-(2-nitrophenyl)propanoate (13a) 1H NMR (400 MHz, CDCl3): δ = 8.03 (d, J = 6.4 Hz, 1 H), 7.91–7.90 (m, 1 H), 7.75 (d, J = 6.4 Hz, 2 H), 7.66 (t, J = 6.2 Hz, 1 H), 7.55–7.47 (m, 3 H), 7.40–7.34 (m, 5 H), 7.30–7.21 (m, 3 H), 7.00 (d, J = 6.0 Hz, 2 H), 5.85–5.80 (m, 2 H), 5.02–4.99 (m, 1 H), 4.24–4.34 (m, 2 H), 4.19–4.15 (m, 1 H), 3.69 (bs, 1 H). 13C NMR (100 MHz, CDCl3): δ = 168.9, 156.1, 150.0, 147.8, 143.5, 141.2, 135.2, 133.7, 129.5, 129.4, 129.1, 127.7, 127.1, 126.2, 125.0, 124.8, 121.1, 119.9, 70.4, 67.4, 59.4, 46.9. IR (ATR): 3401, 1763, 1703, 1522 cm–1. ESI-HRMS: m/z calcd for C30H24N2NaO7 [M + Na]+: 547.1476; found: 547.1464. HPLC [Chiralpak AD, hexane–2-PrOH = 80:20, 0.8 mL/min, λ = 254 nm]: t R (major) = 34.1 min; t R (minor) = 24.7 min.
See Supporting Information for details. See also our contributions: