Subscribe to RSS
DOI: 10.1055/s-0036-1588225
Synthetic Approach to Argpyrimidine as a Tool for Investigating Nonenzymatic Posttranslational Modification of Proteins
Supported by: Austrian Academy of Sciences (APART fellowship)Publication History
Received: 24 January 2017
Accepted after revision: 12 March 2017
Publication Date:
19 April 2017 (online)
Published as part of the Cluster Recent Advances in Protein and Peptide Synthesis
Abstract
Nonenzymatic posttranslational modifications (nPTMs) of proteins are involved in age-related, metabolic and other diseases and need to be investigated at the molecular level. Here, we describe how we used organic synthesis to enable the study of the effect of argpyrimidine (Apy), an nPTM that forms at arginine residues, on one of its target proteins. We developed an efficient approach to Apy as a universal building block for Fmoc-based solid-phase peptide synthesis that allows for the construction of peptides containing this nPTM in predetermined positions. Moreover, a straightforward one-step synthesis of protecting-group-free Apy was achieved, which enabled the preparation of gram-quantities of this noncanonical amino acid that can serve as a biomarker or a feedstock in construction of Apy-containing proteins via the expanded genetic code methods.
Key words
protein modification - argpyrimidine - amino acid synthesis - 2-aminopyrimidinol - Mitsunobu reaction - SPPS - protein semisynthesisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588225.
- Supporting Information
-
References and Notes
- 1a Singh R. Barden A. Mori T. Beilin L. Diabetologia 2001; 44: 129
- 1b Nass N. Bartling B. Navarrete Santos A. Scheubel RJ. Borgermann J. Silber RE. Simm AZ. Gerontol. Geriatr. 2007; 40: 349
- 1c Goh SY. Cooper ME. J. Clin. Endocrinol. Metab. 2008; 93: 1143
- 1d Negre-Salvayre A. Coatrieux C. Ingueneau C. Salvayre R. Br. J. Pharmacol. 2008; 153: 6
- 1e Jaisson S. Gillery P. Clin. Chem. 2010; 56: 1401
- 1f Hegab Z. Gibbons S. Neyses L. Mamas MA. World J. Cardiol. 2012; 4: 90
- 1g Li J. Liu D. Sun L. Lu Y. Zhang Z. J. Neurol. Sci. 2012; 317: 1
- 1h Rabbani N. Thornalley PJ. Biochem. Biophys. Res. Commun. 2015; 458: 221
- 2 Ahmed N. Diabetes Res. Clin. Pract. 2005; 67: 3
- 3 Shipanova IN. Glomb MA. Nagaraj RH. Arch. Biochem. Biophys. 1997; 344: 29
- 4a Padayatti PS. Ng AS. Uchida K. Glomb MA. Nagaraj RH. Invest. Ophthalmol. Vis. Sci. 2001; 42: 1299
- 4b Ahmed N. Thornalley PJ. Dawczynski J. Franke S. Strobel J. Stein G. Haik GM. Invest. Ophthalmol. Vis. Sci. 2003; 44: 5287
- 4c Oya-Ito T. Liu BF. Nagaraj RH. J. Cell. Biochem. 2006; 99: 279
- 4d Gakamsky A. Duncan RR. Howarth NM. Dhillon B. Buttenschön KK. Daly DJ. Gakamsky D. Sci. Rep. 2017; 7: 40375
- 5 Gomes R. Silva MS. Quintas A. Cordeiro C. Freire A. Pereira P. Martins A. Monteiro E. Barroso E. Freire AP. Biochem. J. 2005; 385: 339
- 6a Oya T. Hattori N. Mizuno Y. Miyata S. Maeda S. Osawa T. Uchida K. J. Biol. Chem. 1999; 274: 18492
- 6b Sakamoto H. Mashima T. Yamamoto K. Tsuruo T. J. Biol. Chem. 2002; 277: 45770
- 6c van Heijst JW. J. Niessen HW. M. Hoekman K. Schalkwijk CG. Ann. N. Y. Acad. Sci. 2005; 1043: 725
- 6d Schalkwijk CG. van Bezu J. van der Schors RC. Uchida K. Stehouwer CD. A. van Hinsbergh VW. M. FEBS Lett. 2006; 580: 1565
- 6e van Heijst JW. J. Niessen HW. M. Musters RJ. van Hinsbergh VW. M. Hoekman K. Schalkwijk CG. Cancer Lett. 2006; 241: 309
- 6f Gawlowski T. Stratmann B. Stork I. Engelbrecht B. Brodehl A. Niehaus K. Korfer R. Tschoepe D. Milting H. Horm. Metab. Res. 2009; 41: 594
- 6g Bair WB. Cabello CM. Uchida K. Bause AS. Wondrak GT. Melanoma Res. 2010; 20: 85
- 6h Oya-Ito T. Naito Y. Takagi T. Handa O. Matsui H. Yamada M. Shima K. Yoshikawa T. Biochim. Biophys. Acta 2011; 1812: 769
- 7 Matveenko M. Cichero E. Fossa P. Becker CF. Angew. Chem. Int. Ed. 2016; 55: 11397
- 8a Sreejayan N. Yang X. Palanichamy K. Dolence K. Ren J. Eur. J. Pharmacol. 2008; 593: 30
- 8b Hellwig M. Geissler S. Matthes R. Peto A. Silow C. Brandsch M. Henle T. ChemBioChem 2011; 12: 1270
- 8c Renard B.-L. Boucherle B. Maurin B. Molina M.-C. Norez C. Becq F. Décout J.-L. Eur. J. Med. Chem. 2011; 46: 1935
- 9 Rabbani N. Thornalley PJ. Amino Acids 2012; 42: 1133
- 10 Swamy KC. K. Kumar NN. B. Balaraman E. Kumar KV. P. P. Chem. Rev. 2009; 109: 2551
- 11 Broddefalk J. Bergquist KE. Kihlberg J. Tetrahedron 1998; 54: 12047
- 12 Harris MG. Stewart R. Can. J. Chem. 1977; 55: 3800
- 13 Dodd DS. Kozikowski AP. Tetrahedron Lett. 1994; 35: 977
- 14 Valgimigli L. Brigati G. Pedulli GF. DiLabio GA. Mastragostino M. Arbizzani C. Pratt DA. Chem. Eur. J. 2003; 9: 4997
- 15 Roschek B. Tallman KA. Rector CL. Gillmore JG. Pratt DA. Punta C. Porter NA. J. Org. Chem. 2006; 71: 3527
- 16 Jefferson EA. Seth PP. Robinson DE. Winter DK. Miyaji A. Osgood SA. Swayze EE. Risen LM. Bioorg. Med. Chem. Lett. 2004; 14: 5139
- 17 Zhou J. Matos M.-C. Murphy PV. Org. Lett. 2011; 13: 5716
- 18 Grongsaard P. Bulger PG. Wallace DJ. Tan L. Chen Q. Dolman SJ. Nyrop J. Hoerrner RS. Weisel M. Arredondo J. Itoh T. Xie C. Wen X. Zhao D. Muzzio DJ. Bassan EM. Shultz CS. Org. Process Res. Dev. 2012; 16: 1069
- 19 Kelly TA. McNeil DW. Tetrahedron Lett. 1994; 35: 9003
- 20 Tsunoda T. Yamamiya Y. Itô S. Tetrahedron Lett. 1993; 34: 1639
- 21 Humphries PS. Do QQ. Wilhite DM. Beilstein J. Org. Chem. 2006; 2: 21
- 22a Pascal R. Sola R. Tetrahedron Lett. 1998; 39: 5031
- 22b Chaytor JL. Ben RN. Bioorg. Med. Chem. Lett. 2010; 20: 5251
- 23 Bernini R. Maltese M. Tetrahedron Lett. 2010; 51: 4113
- 24 Bartoli G. Bosco M. Locatelli M. Marcantoni E. Melchiorre P. Sambri L. Org. Lett. 2005; 7: 427
- 25 CCDC 1528587 for 19 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 26 Fischer PM. Tetrahedron Lett. 1992; 33: 7605
- 27 (S)-2-Amino-5-[(5-hydroxy-4,6-dimethylpyrimidin-2-yl)amino]pentanoic Acid (Apyfree , 23) An adaptation of the original published procedure was employed.8a,b A magnetically stirred solution of l-arginine (22, 3.0 g, 17.2 mmol) in methanesulfonic acid (12 mL, 1.5 M) maintained at 25 °C was treated with crude diketone 5 (3.5 g, ca. 22 mmol), resulting in a mildly exothermic reaction. Further portions of compound 5 (2 × 2.7 g, ca. 17 mmol each) were added after 3 and 6 h, respectively. The ensuing dark brown viscous mixture was stirred for 48 h then cooled to 0 °C and neutralized by the dropwise addition of NH4OH (ca. 20 mL of a 28–30% aq solution). The resulting brown-orange mixture (pH ~7) was stirred at 25 °C for 30 min then diluted with H2O (25 mL) and loaded, using additional H2O, onto a column of C18-reversed-phase silica gel (10 × 10 cm) that had been equilibrated with MeOH then H2O. Elution with 0 → 10 → 20% v/v MeOH–H2O and concentration of the relevant fractions containing fluorescent material (Rf = 0.2 in 1:2:7 v/v/v H2O–i-PrOH–EtOAc) afforded the title compound 23 (2.83 g, 65%) as a white powder. A portion of this material was lyophilized from TFA (0.1% in H2O) to obtain compound 23 (zwitterion, white fluffy powder) that was used for characterization and all spectroscopic measurements; mp 192–196 °C (decomp.) [lit. for HCl salt8a 207 °C (decomp.)]. [α]D +28.1 (c 0.3, H2O) [lit.8a +17.5 (c 0.5, 1 M HCl)]. 1H NMR (600 MHz, D2O): δ = 3.73 (t, J = 6.1 Hz, 1 H), 3.44 (t, J = 6.8 Hz, 2 H), 2.39 (s, 6 H), 1.93–1.84 (m, 2 H), 1.75–1.60 (m, 2 H). 1H NMR (600 MHz, (CD3)2SO): δ = 8.14 (br s, 2 H, NH2), 7.87 (br s, 1 H, OH), 6.38 (s, 1 H, NH), 3.86 (t, J = 6.2 Hz, 1 H), 3.18 (dd, J = 12.0, 6.2 Hz, 2 H), 2.18 (s, 6 H), 1.84–1.71 (m, 2 H), 1.63–1.49 (m, 2 H). 13C NMR (150 MHz, D2O): δ = 174.4, 150.8, 137.7, 54.3, 40.4, 27.5, 23.9, 16.8 (due to H/D exchange of the phenolic OH, the corresponding ipso carbon is not visible in the spectrum). 13C NMR (150 MHz, (CD3)2SO): δ = 171.2, 156.3, 155.1, 138.8, 52.1, 40.3, 27.8, 24.9, 19.0. ESI-HRMS: m/z [M + H]+ calcd for C11H18N4O3: 255.1452; found: 255.1448. On 0.6 mmol scale and using pre-packed C18 cartridges for purification, compound 23 was obtained in 82% yield.