Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(02): 253-259
DOI: 10.1055/s-0036-1588329
DOI: 10.1055/s-0036-1588329
letter
Exploitation of Intramolecular Glaser–Eglinton–Hay Macrocyclization for the Synthesis of New Classes of Optically Active Aza-Oxo-Thia Polyether Macrocycles from Amino Alcohol Building Blocks
Further Information
Publication History
Received: 19 July 2016
Accepted after revision: 20 September 2016
Publication Date:
04 October 2016 (online)
Abstract
We report an intramolecular Glaser–Eglinton–Hay coupling as an unprecedented route for assembling optically active aza-oxo polyether macrocycles containing a 1,3-diyne unit from enantiopure amino alcohol building blocks and suitable linkers. Furthermore, the conversion of the 1,3-diyne unit of the aza-oxo polyether macrocycles into a thiophene ring led to the assembly of new classes of optically active aza-oxa-thia (heterotopic) polyether macrocycle analogues of classical 18-C-6 and 18-C-5 systems.
Key words
alkynes - amino alcohols - cross-coupling - crown compounds - macrocycles - Glaser–Eglinton–Hay reactionSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588329.
- Supporting Information
-
References and Notes
- 1a Driggers EM, Hale SP, Lee J, Terrett NK. Nat. Rev. Drug Discovery 2008; 7: 608
- 1b Roxburgh JC. Tetrahedron 1995; 51: 9767
- 1c Parenty A, Moreau X, Campagne J.-M. Chem. Rev. 2006; 106: 911
- 1d Lehn J.-M. Supramolecular Chemistry: Concepts and Perspectives. VCH; Weinheim: 1995
- 1e Kralj M, Tušek-Božić L, Frkanec L. ChemMedChem 2008; 3: 1478
- 1f Huszthy P, Tóth T. Period. Polytech., Chem. Eng. 2007; 51: 45
- 1g Pedersen CJ. J. Am. Chem. Soc. 1967; 89: 2495
- 1h Glenny MW, Lacombe M, Love JB, Blake AJ, Lindoy LF, Luckay RC, Gloe K, Antonioli B, Wilson C, Schröder M. New J. Chem. 2006; 30: 1755
- 2a Cragg PJ, Vahora R In Supramolecular Chemistry: From Molecules to Nanomaterials . Gale PA, Steed J. Wiley-Blackwell; Oxford: 2012: 733
- 2b Gokel GW, Leevy WM, Weber ME. Chem. Rev. 2004; 104: 2723
- 2c Guidry EN, Cantrill SJ, Stoddart JF, Grubbs RH. Org. Lett. 2005; 7: 2129
- 2d Arva P, Channa A, Cragg PJ, Prince PD, Steed JW. New J. Chem. 2002; 26: 440
- 2e Huang ZB, Chang SH. Synlett 2005; 1703
- 3a Krakowiak KE, Bradshaw JS, Zamecka-Krakowiak DJ. Chem. Rev. 1989; 89: 929
- 3b Quinn TP, Atwood PD, Tanski JM, Moore TF, Folmer-Andersen JF. J. Org. Chem. 2011; 76: 10020
- 3c Kim BM, So SM, Choi H. Org. Lett. 2002; 4: 949
- 3d Wenzel M, Gloe K, Gloe K, Bernhard G, Clegg JK, Ji X.-K, Lindoy LF. New J. Chem. 2008; 32: 132
- 4a Landis CR, Sawyer RA, Somsook E. Organometallics 2000; 19: 994
- 4b Correa WH, Scott JL. Molecules 2004; 9: 513
- 4c Yang X.-f, Ning R, Xie L.-j, Cui Y, Zhang Y.-l, Zheng L.-y. Bull. Chem. Soc. Jpn. 2013; 86: 987
- 4d Deniz P, Turgut Y, Togrul M, Hosgoren H. Tetrahedron 2011; 67: 6227
- 4e Huszthy P, Oue M, Bradshaw JS, Zhu CY, Wang T, Dalley NK, Curtis JC, Izatt RM. J. Org. Chem. 1992; 57: 5383
- 4f Chadwick DJ, Cliffe IA, Sutherland IO. J. Chem. Soc., Chem. Commun. 1981; 992
- 4g Gao J, Martell AE. Org. Biomol. Chem. 2003; 1: 2801
- 4h Joly J.-P, Schröder G. Tetrahedron Lett. 1997; 38: 8197
- 4i Chen G.-M, Brown HC, Ramachandran PB. J. Org. Chem. 1999; 64: 721
- 4j Demirel N, Bulut Y. Tetrahedron: Asymmetry 2003; 14: 2633
- 4k Naveen PR, Babu SA. Tetrahedron Lett. 2013; 54: 2255
-
5a Sawamura M, Nagata H, Sakamoto H, Ito Y. J. Am. Chem. Soc. 1992; 114: 2586
- 5b Lewandowski B, Jarosz S. Chem. Commun. 2008; 6399
- 5c Theil A, Hitce J, Retailleau P, Marinetti A. Eur. J. Org. Chem. 2006; 154
- 5d Turgut Y, Aral T, Hosgoren H. Tetrahedron: Asymmetry 2009; 20: 2293
- 5e Hamada T, Manabe K, Ishikawa S, Nagayama S, Shiro M, Kobayashi S. J. Am. Chem. Soc. 2003; 125: 2989
- 6a White CJ, Yudin AK. Nat. Chem. 2011; 3: 509
- 6b Fürstner A, Langemann K. Synthesis 1997; 792
-
6c Gradillas A, Pérez-Castells J. Angew. Chem. Int. Ed. 2006; 45: 6086
- 6d Shu C, Zeng X, Hao M.-H, Wei X, Yee NK, Busacca CA, Han Z, Farina V, Senanayake CH. Org. Lett. 2008; 10: 1303
- 6e Kotha S, Lahiri K. Synlett 2007; 2767
- 7a Glaser C. Ber. Dtsch. Chem. Ges. 1869; 422
-
7b Glaser C. Justus Liebigs Ann. Chem. 1870; 154: 137
- 7c Eglinton G, Galbraith AR. Chem. Ind. (London) 1956; 737
- 7d Hay AS. J. Org. Chem. 1960; 25: 1275
- 7e Liang H, Li J, Wang Z, Yang K. Youji Huaxue 2011; 31: 586
- 7f Alonso F, Yus M. ACS Catal. 2012; 2: 1441
- 8a Acetylene Chemistry: Chemistry, Biology, and Materials Science . Diederich F, Stang PJ, Tykwinski RR. Wiley-VCH; Weinheim: 2005
- 8b Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Chem. Rev. 2013; 113: 6234
- 8c Wendlandt AE, Suess AM, Stahl SS. Angew. Chem. Int. Ed. 2011; 50: 11062
- 8d Rana S, Yamashita K.-i, Sugiura K.-i. Synthesis 2016; 48: 2461
- 8e Hilt G, Hengst C, Arndt M. Synthesis 2009; 395
- 8f Kabalka GW, Wang L, Pagni RM. Synlett 2001; 108
- 9a Huang H, Zhang G, Liang S, Xin N, Gan L. J. Org. Chem. 2012; 77: 2456
- 9b Spruell JM, Paxton WF, Olsen J.-C, Benitez D, Tkatchouk E, Stern C, Trabolsi A, Friedman DC, Goddard III WA, Stoddart JF. J. Am. Chem. Soc. 2009; 131: 11571
- 9c Naveen Babu SA, Kaur G, Aslam NA, Karanam M. RSC Adv. 2013; 4: 18904
- 9d Naveen Babu SA, Aslam NA, Sandhu A, Singh DK, Rana A. Tetrahedron 2015; 71: 7026
- 10 Cyclization of Diynes 5 to Macrocycles 6; General Procedure A mixture of the appropriate diyne 5 (0.2 mmol), Cu(OAc)2·H2O (1 equiv), and DMSO (2 mL) was heated at 110 °C for 6 h in air. The mixture was then diluted with H2O (4 mL) and the solution was filtered and washed with EtOAc (3 or 4 × 5 mL). Next, the combined layers were extracted with EtOAc (3 × 5 mL). The organic layers were combined, dried (Na2SO4), filtered, and evaporated in vacuo. The crude residue was purified by column chromatography (Al2O3, EtOAc/hexane = 20:80).
- 11 Jiang H, Zeng W, Li Y, Wu W, Huang L, Fu W. J. Org. Chem. 2012; 77: 5179
- 12 Conversion of Diyne-Containing Macrocycles 6 into Thiophene-Containing Macrocycles 7; General Procedure A mixture of the appropriate macrocyclic diyne 6 (0.10 mmol), Na2S·xH2O (90 mg), CuI (10 mol%), and 1,10-phenanthroline (15 mol%) in DMF (0.5 mL) was heated at 90 °C for 9 h in air. Workup as described in Ref. 10 gave a crude residue that was purified by column chromatography (silica gel, EtOAc/hexane = 20:80). Thiophene-Containing Macrocyclic Ether 7a Pale-yellow liquid; yield: 33 mg (42%); [α]D 25 –29.08 (c 0.09, CH2Cl2); Rf = 0.55 (20% EtOAc–hexanes). IR (CH2Cl2): 2923, 1600, 1493, 1452, 1259 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.58 (dd, J1 = 7.5, J2 = 1.6 Hz, 2 H), 7.41–7.37 (m, 8 H), 7.31–7.27 (m, 8 H), 7.24–7.19 (m, 6 H), 7.00 (t, J = 7.4 Hz, 2 H), 6.85 (dd, J1 = 8.2, J2 = 0.7 Hz, 2 H), 6.77 (s, 2 H), 4.65 (d, J = 12.8 Hz, 2 H), 4.50 (d, J = 12.8 Hz, 2 H), 4.26–4.24 (m, 4 H), 4.07–3.89 (m, 8 H), 3.73 (d, J = 14.0 Hz, 2 H), 3.55 (dd, J1 = 13.9, J2 = 9.2 Hz, 4 H). 13C NMR (100 MHz, CDCl3): δ = 156.7, 141.5, 140.4, 139.8, 130.3, 129.0, 128.7, 128.5, 128.2, 128.0, 127.6, 126.9, 126.7, 126.0, 120.8, 111.6, 69.4, 67.7, 66.4, 61.9, 55.1, 47.8. HRMS (ESI): [M + H]+ calcd for C52H53N2O4S: 801.3726; found: 801.3734.