Synlett 2017; 28(02): 253-259
DOI: 10.1055/s-0036-1588329
letter
© Georg Thieme Verlag Stuttgart · New York

Exploitation of Intramolecular Glaser–Eglinton–Hay Macrocyclization for the Synthesis of New Classes of Optically Active Aza-Oxo-Thia Polyether Macrocycles from Amino Alcohol Building Blocks

Naveen,
Srinivasarao Arulananda Babu*
Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab 140306, India   Email: sababu@iisermohali.ac.in
› Author Affiliations
Further Information

Publication History

Received: 19 July 2016

Accepted after revision: 20 September 2016

Publication Date:
04 October 2016 (online)


Abstract

We report an intramolecular Glaser–Eglinton–Hay coupling as an unprecedented route for assembling optically active aza-oxo polyether macrocycles containing a 1,3-diyne unit from enantiopure amino alcohol building blocks and suitable linkers. Furthermore, the conversion of the 1,3-diyne unit of the aza-oxo polyether macrocycles into a thiophene ring led to the assembly of new classes of optically active aza-oxa-thia (heterotopic) polyether macrocycle analogues of classical 18-C-6 and 18-C-5 systems.

Supporting Information

 
  • References and Notes

    • 1a Driggers EM, Hale SP, Lee J, Terrett NK. Nat. Rev. Drug Discovery 2008; 7: 608
    • 1b Roxburgh JC. Tetrahedron 1995; 51: 9767
    • 1c Parenty A, Moreau X, Campagne J.-M. Chem. Rev. 2006; 106: 911
    • 1d Lehn J.-M. Supramolecular Chemistry: Concepts and Perspectives. VCH; Weinheim: 1995
    • 1e Kralj M, Tušek-Božić L, Frkanec L. ChemMedChem 2008; 3: 1478
    • 1f Huszthy P, Tóth T. Period. Polytech., Chem. Eng. 2007; 51: 45
    • 1g Pedersen CJ. J. Am. Chem. Soc. 1967; 89: 2495
    • 1h Glenny MW, Lacombe M, Love JB, Blake AJ, Lindoy LF, Luckay RC, Gloe K, Antonioli B, Wilson C, Schröder M. New J. Chem. 2006; 30: 1755
    • 2a Cragg PJ, Vahora R In Supramolecular Chemistry: From Molecules to Nanomaterials . Gale PA, Steed J. Wiley-Blackwell; Oxford: 2012: 733
    • 2b Gokel GW, Leevy WM, Weber ME. Chem. Rev. 2004; 104: 2723
    • 2c Guidry EN, Cantrill SJ, Stoddart JF, Grubbs RH. Org. Lett. 2005; 7: 2129
    • 2d Arva P, Channa A, Cragg PJ, Prince PD, Steed JW. New J. Chem. 2002; 26: 440
    • 2e Huang ZB, Chang SH. Synlett 2005; 1703
    • 3a Krakowiak KE, Bradshaw JS, Zamecka-Krakowiak DJ. Chem. Rev. 1989; 89: 929
    • 3b Quinn TP, Atwood PD, Tanski JM, Moore TF, Folmer-Andersen JF. J. Org. Chem. 2011; 76: 10020
    • 3c Kim BM, So SM, Choi H. Org. Lett. 2002; 4: 949
    • 3d Wenzel M, Gloe K, Gloe K, Bernhard G, Clegg JK, Ji X.-K, Lindoy LF. New J. Chem. 2008; 32: 132
    • 4a Landis CR, Sawyer RA, Somsook E. Organometallics 2000; 19: 994
    • 4b Correa WH, Scott JL. Molecules 2004; 9: 513
    • 4c Yang X.-f, Ning R, Xie L.-j, Cui Y, Zhang Y.-l, Zheng L.-y. Bull. Chem. Soc. Jpn. 2013; 86: 987
    • 4d Deniz P, Turgut Y, Togrul M, Hosgoren H. Tetrahedron 2011; 67: 6227
    • 4e Huszthy P, Oue M, Bradshaw JS, Zhu CY, Wang T, Dalley NK, Curtis JC, Izatt RM. J. Org. Chem. 1992; 57: 5383
    • 4f Chadwick DJ, Cliffe IA, Sutherland IO. J. Chem. Soc., Chem. Commun. 1981; 992
    • 4g Gao J, Martell AE. Org. Biomol. Chem. 2003; 1: 2801
    • 4h Joly J.-P, Schröder G. Tetrahedron Lett. 1997; 38: 8197
    • 4i Chen G.-M, Brown HC, Ramachandran PB. J. Org. Chem. 1999; 64: 721
    • 4j Demirel N, Bulut Y. Tetrahedron: Asymmetry 2003; 14: 2633
    • 4k Naveen PR, Babu SA. Tetrahedron Lett. 2013; 54: 2255
    • 5a Sawamura M, Nagata H, Sakamoto H, Ito Y. J. Am. Chem. Soc. 1992; 114: 2586
    • 5b Lewandowski B, Jarosz S. Chem. Commun. 2008; 6399
    • 5c Theil A, Hitce J, Retailleau P, Marinetti A. Eur. J. Org. Chem. 2006; 154
    • 5d Turgut Y, Aral T, Hosgoren H. Tetrahedron: Asymmetry 2009; 20: 2293
    • 5e Hamada T, Manabe K, Ishikawa S, Nagayama S, Shiro M, Kobayashi S. J. Am. Chem. Soc. 2003; 125: 2989
    • 7a Glaser C. Ber. Dtsch. Chem. Ges. 1869; 422
    • 7b Glaser C. Justus Liebigs Ann. Chem. 1870; 154: 137
    • 7c Eglinton G, Galbraith AR. Chem. Ind. (London) 1956; 737
    • 7d Hay AS. J. Org. Chem. 1960; 25: 1275
    • 7e Liang H, Li J, Wang Z, Yang K. Youji Huaxue 2011; 31: 586
    • 7f Alonso F, Yus M. ACS Catal. 2012; 2: 1441
    • 8a Acetylene Chemistry: Chemistry, Biology, and Materials Science . Diederich F, Stang PJ, Tykwinski RR. Wiley-VCH; Weinheim: 2005
    • 8b Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Chem. Rev. 2013; 113: 6234
    • 8c Wendlandt AE, Suess AM, Stahl SS. Angew. Chem. Int. Ed. 2011; 50: 11062
    • 8d Rana S, Yamashita K.-i, Sugiura K.-i. Synthesis 2016; 48: 2461
    • 8e Hilt G, Hengst C, Arndt M. Synthesis 2009; 395
    • 8f Kabalka GW, Wang L, Pagni RM. Synlett 2001; 108
    • 9a Huang H, Zhang G, Liang S, Xin N, Gan L. J. Org. Chem. 2012; 77: 2456
    • 9b Spruell JM, Paxton WF, Olsen J.-C, Benitez D, Tkatchouk E, Stern C, Trabolsi A, Friedman DC, Goddard III WA, Stoddart JF. J. Am. Chem. Soc. 2009; 131: 11571
    • 9c Naveen Babu SA, Kaur G, Aslam NA, Karanam M. RSC Adv. 2013; 4: 18904
    • 9d Naveen Babu SA, Aslam NA, Sandhu A, Singh DK, Rana A. Tetrahedron 2015; 71: 7026
  • 10 Cyclization of Diynes 5 to Macrocycles 6; General Procedure A mixture of the appropriate diyne 5 (0.2 mmol), Cu(OAc)2·H2O (1 equiv), and DMSO (2 mL) was heated at 110 °C for 6 h in air. The mixture was then diluted with H2O (4 mL) and the solution was filtered and washed with EtOAc (3 or 4 × 5 mL). Next, the combined layers were extracted with EtOAc (3 × 5 mL). The organic layers were combined, dried (Na2SO4), filtered, and evaporated in vacuo. The crude residue was purified by column chromatography (Al2O3, EtOAc/hexane = 20:80).
  • 11 Jiang H, Zeng W, Li Y, Wu W, Huang L, Fu W. J. Org. Chem. 2012; 77: 5179
  • 12 Conversion of Diyne-Containing Macrocycles 6 into Thiophene-Containing Macrocycles 7; General Procedure A mixture of the appropriate macrocyclic diyne 6 (0.10 mmol), Na2xH2O (90 mg), CuI (10 mol%), and 1,10-phenanthroline (15 mol%) in DMF (0.5 mL) was heated at 90 °C for 9 h in air. Workup as described in Ref. 10 gave a crude residue that was purified by column chromatography (silica gel, EtOAc/hexane = 20:80). Thiophene-Containing Macrocyclic Ether 7a Pale-yellow liquid; yield: 33 mg (42%); [α]D 25 –29.08 (c 0.09, CH2Cl2); Rf = 0.55 (20% EtOAc–hexanes). IR (CH2Cl2): 2923, 1600, 1493, 1452, 1259 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.58 (dd, J1 = 7.5, J2 = 1.6 Hz, 2 H), 7.41–7.37 (m, 8 H), 7.31–7.27 (m, 8 H), 7.24–7.19 (m, 6 H), 7.00 (t, J = 7.4 Hz, 2 H), 6.85 (dd, J1 = 8.2, J2 = 0.7 Hz, 2 H), 6.77 (s, 2 H), 4.65 (d, J = 12.8 Hz, 2 H), 4.50 (d, J = 12.8 Hz, 2 H), 4.26–4.24 (m, 4 H), 4.07–3.89 (m, 8 H), 3.73 (d, J = 14.0 Hz, 2 H), 3.55 (dd, J1 = 13.9, J2 = 9.2 Hz, 4 H). 13C NMR (100 MHz, CDCl3): δ = 156.7, 141.5, 140.4, 139.8, 130.3, 129.0, 128.7, 128.5, 128.2, 128.0, 127.6, 126.9, 126.7, 126.0, 120.8, 111.6, 69.4, 67.7, 66.4, 61.9, 55.1, 47.8. HRMS (ESI): [M + H]+ calcd for C52H53N2O4S: 801.3726; found: 801.3734.