Synlett 2017; 28(02): 260-264
DOI: 10.1055/s-0036-1588335
letter
© Georg Thieme Verlag Stuttgart · New York

Lewis Acid Mediated Addition of Indoles and Alcohols to Tetronic Acid and Tetramic Acids

Fernando Banales Mejia
Department of Chemistry, Hobart and William Smith Colleges, Geneva, NY, 14456, USA   Email: pelkey@hws.edu
,
Megan M. Lafferty
Department of Chemistry, Hobart and William Smith Colleges, Geneva, NY, 14456, USA   Email: pelkey@hws.edu
,
Sophia J. Melvin
Department of Chemistry, Hobart and William Smith Colleges, Geneva, NY, 14456, USA   Email: pelkey@hws.edu
,
Nathanyal J. Truax
Department of Chemistry, Hobart and William Smith Colleges, Geneva, NY, 14456, USA   Email: pelkey@hws.edu
,
Maeve H. Kean
Department of Chemistry, Hobart and William Smith Colleges, Geneva, NY, 14456, USA   Email: pelkey@hws.edu
,
Erin T. Pelkey*
Department of Chemistry, Hobart and William Smith Colleges, Geneva, NY, 14456, USA   Email: pelkey@hws.edu
› Author Affiliations
Further Information

Publication History

Received: 09 August 2016

Accepted after revision: 22 September 2016

Publication Date:
13 October 2016 (online)


Abstract

The electrophilic substitution of indoles with tetronic acid and N-acetyltetramic acid mediated by BF3·OEt2 was investigated. This strategy allowed for the preparation of nine indole-substituted furan-2-ones (indolyl-γ-lactones) and 3-pyrrolin-2-ones (indolyl-γ-lactams) and is more straightforward than previously reported synthetic methods. During the course of our investigation, we also discovered a facile synthesis of tetronates and a tetramate via a BF3-mediated addition of alcohols to tetronic acid and N-acetyltetramic acid, respectively.

Supporting Information

 
  • References and Notes

    • 3a Kaletas BK, Williams RM, König B, De Cola L. Chem. Commun. 2002; 776
    • 3b Nakazno M, Jinguji A, Nanbu S, Kuwano R, Zheng Z, Saita K, Oshikawa Y, Mikuni Y, Murakami T, Zhao Y, Sasaki S, Zaitsu K. Phys. Chem. Chem. Phys. 2010; 12: 9783
  • 4 Mahboobi S, Eichhorn E, Popp A, Sellmer A, Elz S, Möllmann U. Eur. J. Med. Chem. 2006; 41: 176
  • 5 Lin Y, Chen J. Lett. Drug Des. Discovery 2013; 10: 382
  • 6 Conchon E, Anizon F, Golsteyn RM, Léonce S, Pfeiffer B, Prudhomme M. Tetrahedron 2006; 62: 11136
    • 7a Baron M, de Cointet P, Bauduin G, Pietrasanta Y, Pucci B. Bull. Soc. Chim. Fr. 1979; 369
    • 7b Baron M, de Cointet P, Bauduin G, Pietrasanta Y, Pucci B. Bull. Soc. Chim. Fr. 1982; 249
  • 9 van Loon AA, Holton MK, Downey CR, White TM, Rolph CE, Bruening SR, Li G, Delaney KM, Pelkey SJ, Pelkey ET. J. Org. Chem. 2014; 79: 8049
  • 10 Gaudêncio SP, Santos MM. M, Lobo AM, Prabhakar S. Tetrahedron Lett. 2003; 44: 2577
  • 11 We have also recently reported related chemistry involving 3-aryltetramic acids: Truax NJ, Banales Mejia F, Kwansare DO, Lafferty MM, Kean MH, Pelkey ET. J. Org. Chem. 2016; 81: 6808
  • 12 For a systematic study of Lewis acid mediated additions of indoles to maleimides, see ref. 1f.
  • 13 Similar chemistry has also been investigated with N-methylindole and hydroxyquinones: Koulouri S, Malamidou-Xenikaki E, Spyroudis S. Tetrahedron 2005; 61: 10894
  • 15 Chakrabarty M, Kundu T, Harigaya Y. J. Chem. Res. 2004; 778
  • 16 Santra S, Majee A, Hajra A. Tetrahedron Lett. 2011; 52: 3825
  • 17 General Procedure A reaction vial fitted with a septa-bonded cap was charged with a stir bar, indole 8 (1.00 mmol or 1.20 mmol), tetronic acid (7, 1.00 mmol) or tetramic acid (6, 1.00 mmol), and anhydrous solvent (10 mL) as noted. Neat BF3·OEt2 (185 μL, 1.50 mmol) was added through the septum via syringe. The reaction vial was heated to the specified temperature for the specified time and then allowed to cool to r.t. MeOH (1 mL) was added to the reaction mixture, and the solvent was removed in vacuo. The crude materials obtained were purified by flash chromatography (EtOAc–PE).
  • 18 Compound 4b (0.194 g, 0.910 mmol, 91% yield): white powder; mp 204–205 °C. IR (ATR, neat): 1717 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 8.01 (s, 1 H), 7.92–7.94 (m, 1 H), 7.57–7.59 (m, 1 H), 7.30–7.34 (m, 1 H), 7.22–7.26 (m, 1 H), 6.40 (t, J = 1.6 Hz, 1 H), 5.34 (d, J = 1.6 Hz, 2 H), 3.86 (s, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 175.6, 158.7, 138.0, 130.2, 126.0, 123.8, 122.4, 120.5, 110.6, 107.5, 107.2, 71.5, 33.8. HMRS (ESI-FTICR): m/z calcd for C13H11NO2·Na: 236.0682; found: 236.0679.
  • 20 Chang TT, More SV, Lu I.-H, Hsu J.-C, Chen T.-J, Jen YC, Lu C.-K, Li W.-S. Eur. J. Med. Chem. 2011; 46: 3810
  • 21 Re-examination of the 1H NMR spectra of the crude reaction mixtures involving tetronic acid (7) also revealed the presence of the corresponding tetronate byproduct 11a in some cases.
  • 22 Cuiper AD, Brzostowska M, Gawronski JK, Smeets WJ. J, Spek AL, Hiemstra H, Kellogg RM, Feringa BL. J. Org. Chem. 1999; 64: 2567
  • 23 Albrecht D, Basler B, Bach T. J. Org. Chem. 2008; 73: 2345
  • 24 Patino N, Frérot E, Galeotti N, Poncet J, Coste J, Dufour M.-N, Jouin P. Tetrahedron 1992; 48: 4115
  • 25 Schobert R, Müller S, Bestmann H.-J. Synlett 1995; 425
  • 26 Willis C, Bodio E, Bourdreux Y, Billaud C, Le Gall T, Mioskowski C. Tetrahedron Lett. 2007; 48: 6421
  • 27 Bajwa JS, Anderson RC. Tetrahedron Lett. 1990; 31: 6973
  • 28 Zimmer H, Amer A, Van Pham C, Schmidt DG. J. Org. Chem. 1988; 53: 3368