Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2017; 49(06): 1158-1167
DOI: 10.1055/s-0036-1588358
DOI: 10.1055/s-0036-1588358
short review
First-Row Late Transition Metals for Catalytic (Formal) Hydroamination of Unactivated Alkenes
Further Information
Publication History
Received: 04 September 2016
Accepted after revision: 27 October 2016
Publication Date:
29 November 2016 (online)
Abstract
This short review provides an overview of the most noteworthy achievements in the area of hydroamination and formal hydroamination of unactivated alkenes catalysed by zinc-, copper-, nickel-, cobalt-, and iron-based systems. The relevant literature from 2009 until mid-2016 has been covered.
1 Introduction
2 Activation Strategies
3 Zinc-Based Catalytic Systems
4 Copper-Based Catalytic Systems
5 Nickel-Based Catalytic System
6 Cobalt-Based Catalytic System
7 Iron-Based Catalytic Systems
8 Outlook
-
References
- 1a Müller TE, Hultzsch KC, Yus M, Foubelo F, Tada M. Chem. Rev. 2008; 108: 3795
- 1b Hesp KD, Stradiotto M. ChemCatChem 2010; 2: 1192
- 1c Hannedouche J In Science of Synthesis Knowledge Updates . Vol. 2013/4. Banert K, Carreira EM, Marek I, Reissig H.-U, Steel PG. Thieme; Stuttgart: 2013: 1
- 1d Li W, Zhang X, Reznichenko A, Nawara-Hultzsch A, Hultzsch K In Stereoselective Formation of Amines . Li W, Zhang X. Springer; Heidelberg: 2014: 191
- 1e Rodriguez-Ruiz V, Carlino R, Bezzenine-Lafollée S, Gil R, Prim D, Schulz E, Hannedouche J. Dalton Trans. 2015; 44: 12029
- 1f Huang L, Arndt M, Gooßen K, Heydt H, Gooßen LJ. Chem. Rev. 2015; 115: 2596
- 1g Bernoud E, Lepori C, Mellah M, Schulz E, Hannedouche J. Catal. Sci. Technol. 2015; 5: 2017
- 2a MacDonald MJ, Schipper DJ, Ng PJ, Moran J, Beauchemin AM. J. Am. Chem. Soc. 2011; 133: 20100
- 2b Ickes AR, Ensign SC, Gupta AK, Hull KL. J. Am. Chem. Soc. 2014; 136: 11256
- 2c Gurak JA. Jr, Yang KS, Liu Z, Engle KM. J. Am. Chem. Soc. 2016; 138: 5805
- 3a Julian LD, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 13813
- 3b Bernoud E, Oulié P, Guillot R, Mellah M, Hannedouche J. Angew. Chem. Int. Ed. 2014; 53: 4930
- 4a Zhang Z, Du Lee S, Widenhoefer RA. J. Am. Chem. Soc. 2009; 131: 5372
- 4b Reznichenko AL, Nguyen HN, Hultzsch KC. Angew. Chem. Int. Ed. 2010; 49: 8984
- 5a Utsunomiya M, Kuwano R, Kawatsura M, Hartwig JF. J. Am. Chem. Soc. 2003; 125: 5608
- 5b Utsunomiya M, Hartwig JF. J. Am. Chem. Soc. 2004; 126: 2702
- 5c Nguyen TM, Nicewicz DA. J. Am. Chem. Soc. 2013; 135: 9588
- 5d Ensign SC, Vanable EP, Kortman GD, Weir LJ, Hull KL. J. Am. Chem. Soc. 2015; 137: 13748
- 6 Taylor JG, Whittall N, Hii KK. Org. Lett. 2006; 8: 3561
- 7 Komeyama K, Morimoto T, Takaki K. Angew. Chem. Int. Ed. 2006; 45: 2938
- 8 Ohmiya H, Moriya T, Sawamura M. Org. Lett. 2009; 11: 2145
- 9 Shigehisa H, Aoki T, Yamaguchi S, Shimizu N, Hiroya K. J. Am. Chem. Soc. 2013; 135: 10306
- 10a Miki Y, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2013; 52: 10830
- 10b Zhu S, Niljianskul N, Buchwald SL. J. Am. Chem. Soc. 2013; 135: 15746
- 11 Huehls CB, Lin A, Yang J. Org. Lett. 2014; 16: 3620
- 12 Gui J, Pan C.-M, Jin Y, Qin T, Lo JC, Lee BJ, Spergel SH, Mertzman ME, Pitts WJ, La Cruz TE, Schmidt MA, Darvatkar N, Natarajan S, Baran PS. Science (Washington, D. C.) 2015; 348: 886
- 13 In this case, the nitro group of the nitrogen partner is also activated via a reduction to a nitroso intermediate.
- 14 Zulys A, Dochnahl M, Hollmann D, Löhnwitz K, Herrmann J.-S, Roesky PW, Blechert S. Angew. Chem. Int. Ed. 2005; 44: 7794
- 15 Dochnahl M, Pissarek J.-W, Blechert S, Löhnwitz K, Roesky PW. Chem. Commun. 2006; 3405
- 16a Löhnwitz K, Molski MJ, Lühl A, Roesky PW, Dochnahl M, Blechert S. Eur. J. Inorg. Chem. 2009; 1369
- 16b Dochnahl M, Löhnwitz K, Lühl A, Pissarek J.-W, Biyikal M, Roesky PW, Blechert S. Organometallics 2010; 29: 2637
- 16c Jenter J, Lühl A, Roesky PW, Blechert S. J. Organomet. Chem. 2011; 696: 406
- 17 Pissarek J.-W, Schlesiger D, Roesky PW, Blechert S. Adv. Synth. Catal. 2009; 351: 2081
- 18a Mukherjee A, Sen TK, Ghorai PKr, Samuel PP, Schulzke C, Mandal SK. Chem. Eur. J. 2012; 18: 10530
- 18b Mukherjee A, Sen TK, Ghorai PKr, Mandal SK. Organometallics 2013; 32: 7213
- 19 Horrillo-Martinez P, Hultzsch KC. Tetrahedron Lett. 2009; 50: 2054
- 20a Turnpenny BW, Hyman KL, Chemler SR. Organometallics 2012; 31: 7819
- 20b Michon C, Medina F, Capet F, Roussel P, Agbossou-Niedercorn F. Adv. Synth. Catal. 2010; 35: 3293
- 21 Ohmiya H, Yoshida M, Sawamura M. Synlett 2010; 2136
- 22 Blieck R, Bahri J, Taillefer M, Monnier F. Org. Lett. 2016; 18: 1482
- 23 For a historical background and a full story account of copper-catalysed formal hydroamination using hydroxylamine esters: Pirnot MT, Wang Y.-M, Buchwald SL. Angew. Chem. Int. Ed. 2016; 55: 48
- 24a Deutsch C, Krause N, Lipshutz BH. Chem. Rev. 2008; 108: 2916
- 24b Jordan AJ, Lalic G, Sadighi JP. Chem. Rev. 2016; 116: 8318
- 25a Corpet M, Gosmini C. Synthesis 2014; 46: 2258
- 25b Yan X, Yang X, Xi C. Catal. Sci. Technol. 2014; 4: 4169
- 25c Dong X., Liu Q., Dong Y., Liu H.; Chem. Eur. J.; in press; DOI: 10.1002/chem.201601607.
- 26a Rucker RP, Whittaker AM, Dang H, Lalic G. J. Am. Chem. Soc. 2012; 134: 6571
- 26b Matsuda N, Hirano K, Satoh T, Miura M. J. Am. Chem. Soc. 2013; 135: 4934
- 26c Sakae R, Hirano K, Miura M. J. Am. Chem. Soc. 2015; 137: 6460
- 26d Xi Y, Hartwig JF. J. Am. Chem. Soc. 2016; 138: 6703
- 27 For a recent review on enantioselective copper-catalysed functionalisation of unactivated alkenes: Sorádová Z, Šebesta R. ChemCatChem 2016; 8: 2581
- 28 Miki Y, Hirano K, Satoh T, Miura M. Org. Lett. 2014; 16: 1498
- 29 Niljianskul N, Zhu S, Buchwald SL. Angew. Chem. Int. Ed. 2015; 54: 1638
- 30 Zhu S, Buchwald SL. J. Am. Chem. Soc. 2014; 136: 15913
- 31 Bandar JS, Pirnot MT, Buchwald SL. J. Am. Chem. Soc. 2015; 137: 14812
- 32 Campbell MJ, Johnson JS. Org. Lett. 2007; 9: 1521
- 33 For a detailed computational exploration of the mechanism: Tobisch S. Chem. Eur. J. 2016; 22: 8290
- 34 Niu D, Buchwald SL. J. Am. Chem. Soc. 2015; 137: 9716
- 35 Yang Y, Shi S.-L, Niu D, Liu P, Buchwald SL. Science (Washington, D. C.) 2015; 349: 62
- 36 Xi Y, Butcher TW, Zhang J, Hartwig JF. Angew. Chem. Int. Ed. 2016; 55: 776
- 37a Fogg DE, dos Santos EN. Coord. Chem. Rev. 2004; 248: 2365
- 37b Patil NT, Shinde VS, GajulaShindoh B. Org. Biomol. Chem. 2012; 10: 211
- 38a Shi S.-L, Buchwald SL. Nat. Chem. 2015; 7: 38
- 38b Zhu S, Niljianskul N, Buchwald SL. Nat. Chem. 2016; 8: 144
- 38c Shi S.-L, Wong ZL, Buchwald SL. Nature (London) 2016; 532: 353
- 40 For a recent review on the amine synthesis via transition-metal-catalysed hydrosilylation methodologies: Li B, Sortais J.-B, Darcel C. RSC Adv. 2016; 6: 57603
- 41 Pawlas J, Nakao Y, Kawatsura M, Hartwig JF. J. Am. Chem. Soc. 2002; 124: 3369
- 42a Baker R, Cook AH, Halliday DE, Smith TN. J. Chem. Soc., Perkin Trans. 2 1974; 1511
- 42b Baker R, Onions A, Popplestone RJ, Smith TN. J. Chem. Soc., Perkin Trans. 2 1975; 1133
- 43 Shigehisa H, Koseki N, Shimizu N, Fujisawa M, Niitsu M, Hiroya K. J. Am. Chem. Soc. 2014; 136: 13534
- 44 Shigehisa H, Aoki T, Yamaguchi S, Shimizu N, Hiroya K. J. Am. Chem. Soc. 2013; 135: 10306
- 45 Crossley SW. M, Obradors C, Martinez RM, Shenvi RA. Chem. Rev. 2016; 116: 8912
- 46a Michaux J, Terrasson V, Marque S, Wehbe J, Prim D, Campagne J.-M. Eur. J. Org. Chem. 2007; 2601
- 46b Jung MS, Kim WS, Shin YH, Jin HJ, Kim YS, Kang EJ. Org. Lett. 2012; 14: 6262
- 46c Cheng X, Xia Y, Wei H, Xu B, Zhang C, Li Y, Qian G, Zhang X, Li K, Li W. Eur. J. Org. Chem. 2008; 1929
- 47a Lo JC, Yabe Y, Baran PS. J. Am. Chem. Soc. 2014; 136: 1304
- 47b Lo JC, Gui J, Yabe Y, Pan C.-M, Baran PS. Nature (London) 2014; 516: 343
- 48a Janzen EG. Acc. Chem. Res. 1971; 4: 31
- 48b Kato K, Mukaiyama T. Chem. Lett. 1992; 21: 1137
- 48c Leggans EK, Barker TJ, Duncan KK, Boger DL. Org. Lett. 2012; 14: 1428
- 49 Nakazawa H, Itazaki M. Top. Organomet. Chem. 2011; 33: 27
- 50 As an alternative pathway, the authors have proposed that the hydroamination product might also originate from proton transfer between a [Fen]–H species and the oxygen-centred radical, followed by single-electron reduction by a [Fen-1] species.
- 51a Villa M, von Wangelin AJ. Angew. Chem. Int. Ed. 2015; 54: 11906
- 51b Ref. 45.
- 52 Obradors C, Martinez RM, Shenvi RA. J. Am. Chem. Soc. 2016; 138: 4962
For some recent strategies towards these goals:
For seminal reports:
For a selection of related strategies reported for the C–N bond formation by copper-catalysed electrophilic amination of alkenes:
For specific definition of the term ‘auto-tandem’ or ‘self-relay’ catalysis, see:
For some early works:
For a historical background and a full presentation of this work, see