Synlett 2017; 28(05): 615-619
DOI: 10.1055/s-0036-1588382
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of N,N′-Dialkylated Cyclohexane-1,2-diamines and Their Application as Asymmetric Ligands and Organocatalysts for the Synthesis of Alcohols

Alexey A. Tsygankov
a   Moscow Chemical Lyceum, Tamozhenniy proezd 4, Moscow, Russian Federation
,
Man-Seog Chun
b   Korea Science Academy of KAIST, 105-47, Baegyanggwanmun-ro, Busanjin-gu, 47162 Busan, Republic of Korea
,
Alexandra D. Samoylova
a   Moscow Chemical Lyceum, Tamozhenniy proezd 4, Moscow, Russian Federation
,
Seongyeon Kwon
b   Korea Science Academy of KAIST, 105-47, Baegyanggwanmun-ro, Busanjin-gu, 47162 Busan, Republic of Korea
,
Yuliya M. Kreschenova
a   Moscow Chemical Lyceum, Tamozhenniy proezd 4, Moscow, Russian Federation
,
Suhyeon Kim
b   Korea Science Academy of KAIST, 105-47, Baegyanggwanmun-ro, Busanjin-gu, 47162 Busan, Republic of Korea
,
Euijin Shin
b   Korea Science Academy of KAIST, 105-47, Baegyanggwanmun-ro, Busanjin-gu, 47162 Busan, Republic of Korea
,
Jinho Oh
b   Korea Science Academy of KAIST, 105-47, Baegyanggwanmun-ro, Busanjin-gu, 47162 Busan, Republic of Korea
,
Tatyana V. Strelkova
c   A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, 119991 Moscow, Russian Federation   Email: Chusov@ineos.ac.ru
,
Valerii S. Kolesov
c   A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, 119991 Moscow, Russian Federation   Email: Chusov@ineos.ac.ru
,
Fedor I. Zubkov
d   Peoples Friendship University of Russia, Dept Organic Chemistry, 6 Miklukho-Maklaya St, Moscow 117198, Russian Federation
,
Sergei E. Semenov
a   Moscow Chemical Lyceum, Tamozhenniy proezd 4, Moscow, Russian Federation
,
Ivan V. Fedyanin
c   A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, 119991 Moscow, Russian Federation   Email: Chusov@ineos.ac.ru
,
Denis Chusov*
a   Moscow Chemical Lyceum, Tamozhenniy proezd 4, Moscow, Russian Federation
c   A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, 119991 Moscow, Russian Federation   Email: Chusov@ineos.ac.ru
d   Peoples Friendship University of Russia, Dept Organic Chemistry, 6 Miklukho-Maklaya St, Moscow 117198, Russian Federation
› Author Affiliations
Further Information

Publication History

Received: 05 October 2016

Accepted after revision: 29 November 2016

Publication Date:
15 December 2016 (online)


Abstract

A series of N,N′-dialkylated derivatives of (1R,2R)-cyclohexane-1,2-diamine were synthesized, and a new approach to the one-pot preparation of this type of amine was demonstrated. The prepared diamines were used as organocatalysts for the two-step synthesis of α-hydroxy γ-keto esters from arenes, chlorooxoacetates, and ketones; they were also used as chiral ligands for Meervein–Ponndorf–Verley reductions and Henry reactions.

Supporting Information

 
  • References and Notes

  • 1 List B, Lerner RA, Barbas III. CF. J. Am. Chem. Soc. 2000; 122: 2395
  • 2 Machajewski TD, Wong C.-H. Angew. Chem. Int. Ed. 2000; 39: 1352
  • 3 Matsuo J.-i, Murakami MM. Angew. Chem. Int. Ed. 2013; 52: 9109
  • 5 van Putten PL. Antonie van Leeuwenhoek 1979; 45: 622
  • 8 Chusov D, List B. Angew. Chem. Int. Ed. 2014; 53: 5199
  • 9 Yagafarov NZ, Usanov DL, Moskovets AP, Kagramanov ND, Maleev VI, Chusov D. ChemCatChem 2015; 7: 2590
  • 10 Diamines 3ak; One-Step General Procedure A glass vial in a 10-mL stainless-steel autoclave was charged with Rh2(OAc)4 (0.7 mg, 1.60 μmol, 1 mol%), (1R,2R)-cyclohexane-1,2-diamine dihydrochloride (30.0 mg, 0.160 mmol, 100 mol%), K2CO3 (26.6 mg, 0.192 mmol, 120 mol%), i-PrOH (0.1 mL), H2O (0.1 mL), and the appropriate aldehyde (0.320 mmol, 200 mol%). The autoclave was then sealed, flushed three times with CO (5 atm), and pressurized with CO (50 atm). The reactor was placed in a preheated oil bath (140 °C). After 4 h, the reactor was cooled to r.t. and depressurized. The residue was collected by filtration and analyzed by 1H NMR.
  • 11 Schiff Bases 2ak; General Procedure A mixture of (1R,2R)-cyclohexane-1,2-diaminium (S)-tartrate (1.0 equiv), K2CO3 (1.0 equiv), and H2O (0.66 mL per mmol of K2CO3) was stirred until the solids were completely dissolved and then MeOH (5.2 mL/mmol of tartrate) was added. The mixture was heated to 65 °C and a solution of the appropriate aldehyde (2 equiv) in MeOH (2.2 mL/mmol of tartrate) was added over 30 min. The mixture was refluxed for an additional 4 h, then cooled to r.t. and concentrated in vacuo. The residue was dissolved in EtOAc (4 mL/mmol of tartrate) and the solution was washed with H2O (2 × 1 mL/mmol of tartrate), dried (Na2SO4), and concentrated in vacuo to give a beige-colored crude product. The crude product containing some starting aldehyde was used in the next step without further purification. (1R,2R)-2,2′-[Cyclohexane-1,2-diylbis(nitrilomethylylidene)]diphenol (2i) Yellow oil; yield: 3.1 g (82%). 1H NMR (300 MHz, CDCl3): δ = 8.32 (s, 2 H), 7.34–7.26 (m, 2 H), 7.21 (dd, J = 7.6, 1.5 Hz, 2 H), 6.95 (d, J = 8.2 Hz, 2 H), 6.89–6.82 (m, 2 H), 3.43–3.32 (m, 2 H), 2.06–1.88 (m, 4 H), 1.87–1.68 (m, 2 H), 1.62–1.46 (m, 2 H).
  • 12 Diamines 3ak; General Procedure from Schiff Bases 2ak NaBH4 (2.1 equiv) was added portionwise over 40 min to a solution of the appropriate Schiff base 2 (1.0 equiv) in MeOH (4 mL/mmol of Schiff base) at r.t. The mixture was refluxed with stirring for 1 h then cooled to r.t. H2O (5 mL/mmol of Schiff base) was added, the mixture was extracted with CH2Cl2 (3 × 4 mL/mmol of Schiff base), and the organic layer was concentrated. If any aldehyde remained in the mixture, the residue was dissolved in 35% aq HCl (1 mL/mmol of Schiff base) and the solution was washed with CH2Cl2 (3 × 4 mL/mmol of Schiff base). Excess K2CO3 (4.5 equiv) was added to the aqueous phase, which was extracted with CH2Cl2 (3 × 3 mL/mmol of Schiff base). The organic layers were combined, dried, and concentrated to give an oily product. If the product was not sufficiently pure, it was purified by column chromatography. (1R,2R)-N,N′-Bis(4-chlorobenzyl)cyclohexane-1,2-diamine (3e) Yellow oil; yield: 2.45 g (48%); [α]D 25 –64.7 (с 1.2, CHCl3). 1H NMR (600 MHz, CDCl3): δ = 7.29 (d, J = 8.4 Hz, 4 H), 7.25 (d, J = 8.4 Hz, 4 H), 3.88 (d, J = 13.4 Hz, 2 H), 3.64 (d, J = 13.4 Hz, 2 H), 2.28–2.24 (m, 2 H), 2.17–2.12 (m, 2 H), 1.76–1.71 (m, 2 H), 1.27–1.18 (m, 2 H), 1.11–0.97 (m, 2 H). 13C NMR (101 MHz, CDCl3): δ = 139.6, 132.5, 129.5, 128.6, 61.2, 50.5, 32.0, 25.5; MS (ESI): m/z = 363, 365, 367 [M + H]+.
  • 15 Methyl (2S)-2-Hydroxy-4-oxo-2-phenylpentanoate (5a) White crystals; yield: 31.5 mg (93%). 1H NMR (300 MHz, CDCl3): δ = 7.56 (dd, J = 8.1, 1.2 Hz, 2 H), 7.41–7.27 (m, 3 H), 4.50–4.40 (br s, 1 H), 3.75 (s, 3 H), 3.56 (d, J = 17.7 Hz, 1 H), 3.01 (d, J = 17.7 Hz, 1 H), 2.21 (s, 3 H).