Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(18): 2421-2424
DOI: 10.1055/s-0036-1588474
DOI: 10.1055/s-0036-1588474
cluster
A Borane-Catalyzed Metal-Free Hydrosilylation of Chromones and Flavones
We are grateful for the generous financial support by the National Natural Science Foundation of China (21222207, 21572231, 21521002).Further Information
Publication History
Received: 28 April 2017
Accepted after revision: 29 May 2017
Publication Date:
06 July 2017 (online)
Published as part of the Cluster Silicon in Synthesis and Catalysis
Abstract
A Piers-type hydrosilylation of chromones and flavones has been successfully realized for the first time using 0.1 mol % of borane catalyst generated in situ by hydroboration of pentafluorostyrene with HB(C6F5)2 to afford a variety of chromanones and flavanones in 60–99% yields. An attempt for the asymmetric transformation with chiral diyne and HB(C6F5)2 gave chromanones and flavanones in high yields with up to 32% ee.
Key words
hydrosilylation - chromones - flavones - chromanones - flavanones - borane catalyst - alkene - chiral diyneSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588474.
- Supporting Information
-
References and Notes
- 1a Chemistry of Heterocyclic Compounds: Chromens, Chromanones, and Chromones. Vol. 31. Ellis G.-P. John Wiley and Sons; New York: 1977
- 1b Flavonoids: Chemistry, Biochemistry and Applications . Andersen ØM. CRC, Taylor and Francis; Boca Raton: 1986
- 1c Flavonoids: Biosynthesis, Biological Effects and Dietary Sources. Keller RB. Nova Science; Hauppauge: 2009
- 3a Biddle MM. Lin M. Scheidt KA. J. Am. Chem. Soc. 2007; 129: 3830
- 3b Wang L.-J. Liu X.-H. Dong Z.-H. Fu X. Feng X.-M. Angew. Chem. Int. Ed. 2008; 47: 8670
- 3c Wang H.-F. Cui H.-F. Chai Z. Li P. Zheng C.-W. Yang Y.-Q. Zhao G. Chem. Eur. J. 2009; 15: 13299
- 3d Hintermann L. Dittmer C. Eur. J. Org. Chem. 2012; 5573
- 4a Chen J. Chen J. Lang F. Zhang X. Cun L. Zhu J. Deng J. Liao J. J. Am. Chem. Soc. 2010; 132: 4552
- 4b Korenaga T. Hayashi K. Akaki Y. Maenishi R. Sakai T. Org. Lett. 2011; 13: 2022
- 4c Holder JC. Marziale AN. Gatti M. Mao B. Stoltz BM. Chem. Eur. J. 2013; 19: 74
- 4d He Q. So CM. Bian Z. Hayashi T. Wang J. Chem. Asian J. 2015; 10: 540
- 5a Valla C. Baeza A. Menges F. Pfaltz A. Synlett 2008; 3167
- 5b Zhao D.-B. Beiring B. Glorius F. Angew. Chem. Int. Ed. 2013; 52: 8454
- 6 Parks DJ. Piers WE. J. Am. Chem. Soc. 1996; 118: 9440
- 7 Oesteich M. Hermeke J. Mohr J. Chem. Soc. Rev. 2015; 44: 2202
- 8a Blackwell JM. Foster KL. Beck VH. Piers WE. J. Org. Chem. 1999; 64: 4887
- 8b Blackwell JM. Sonmor ER. Scoccitti T. Piers WE. Org. Lett. 2000; 2: 3921
- 8c Berkefeld A. Piers WE. Parvez M. J. Am. Chem. Soc. 2010; 132: 10660
- 8d Simonneau A. Oestreich M. Angew. Chem. Int. Ed. 2013; 52: 11905
- 8e Pérez M. Hounjet LJ. Caputo CB. Dobrovetsky R. Stephan DW. J. Am. Chem. Soc. 2013; 135: 18308
- 8f Adduci LL. McLaughlin MP. Bender TA. Becker JJ. Gagné MR. Angew. Chem. Int. Ed. 2014; 53: 1646
- 8g Houghton AY. Hurmalainen J. Mansikamäki A. Piers WE. Tuononen HM. Nat. Chem. 2014; 6: 983
- 8h Gandhamsetty N. Joung S. Park S.-W. Park S. Chang S. J. Am. Chem. Soc. 2014; 136: 16780
- 8i Granhamsetty N. Park J. Jeong J. Park S.-W. Park S. Chang S. Angew. Chem. Int. Ed. 2015; 54: 6832
- 8j Chen J. Chen EY.-X. Angew. Chem. Int. Ed. 2015; 54: 6842
- 8k Mehta M. Holthausen MH. Mallov I. Pérez M. Qu Z.-W. Grimme S. Stephan DW. Angew. Chem. Int. Ed. 2015; 54: 8250
- 8l Simonneau A. Oestreich M. Nat. Chem. 2015; 7: 816
- 9 Feng X. Du H. Tetrahedron Lett. 2014; 55: 6959
- 10a Rendler S. Oestreich M. Angew. Chem. Int. Ed. 2008; 47: 5997
- 10b Hog DT. Oestreich M. Eur. J. Org. Chem. 2009; 5047
- 10c Mewald M. Oestreich M. Chem. Eur. J. 2012; 18: 14079
- 10d Hermeke J. Mewald M. Oestreich M. J. Am. Chem. Soc. 2013; 135: 17537
- 10e Chen D. Leich V. Pan F. Klankermayer J. Chem. Eur. J. 2012; 18: 5184
- 10f Süsse L. Hermeke J. Oestreich M. J. Am. Chem. Soc. 2016; 138: 6940
- 11 Greb L. Oña-Burgos P. Kubas A. Falk FC. Breher F. Fink K. Paradies J. Dalton Trans. 2012; 41: 9056
- 12 Kim Y. Chang S. Angew. Chem. Int. Ed. 2016; 55: 218
- 13a Liu Y. Du H. J. Am. Chem. Soc. 2013; 135: 6810
- 13b Wei S. Du H. J. Am. Chem. Soc. 2014; 136: 12261
- 13c Ren X. Li G. Wei S. Du H. Org. Lett. 2015; 17: 990
- 13d Zhang Z. Du H. Org. Lett. 2015; 17: 2816
- 13e Zhang Z. Du H. Org. Lett. 2015; 17: 6266
- 14a Zhu X. Du H. Org. Biomol. Chem. 2015; 13: 1013
- 14b Ren X. Du H. J. Am. Chem. Soc. 2016; 138: 810
- 15 Massey AG. Park AJ. J. Organometallic Chem. 1964; 2: 245
- 16a Parks DJ. von H Spence RE. Piers WE. Angew. Chem., Int. Ed. Engl. 1995; 34: 809
- 16b Parks DJ. Piers WE. Yap GP. A. Organometallics 1998; 17: 5492
- 17 General Procedure for Hydrosilylations To a tube, HB(C6F5)2 (0.0035 g, 0.01 mmol), 2,3,4,5,6-pentafluorostyrene (0.0019 g, 0.01 mmol), and dry toluene (0.10 mL) were added in a nitrogen atmosphere glovebox. The resulting mixture was stirred for 5 min at r.t. to afford a catalyst solution (0.10 M). To a sealing tube (15 mL), catalyst solution (0.0004 mmol, 4 μL, 0.1 M), PhMe2SiH (0.0649 g, 0.48 mmol), chromone or flavone 1(0.0644 g, 0.4 mmol), and dry toluene (0.8 mL) were added. The reaction mixture was stirred at 80 °C for 15 h, and then was cooled to r.t. followed by addition of TFA (0.0547 g, 0.48 mmol). The resulting mixture stirred at r.t. for 10 min and was concentrated and purified by column chromatography on silica gel to afford the corresponding products 3. 2-Isopropylchroman-4-one (3d) Colorless oil, 0.0593 g, 78% yield. 1H NMR (400 MHz, CDCl3): δ = 7.87 (d, J = 7.6 Hz, 1 H), 7.46 (dd, J = 8.0, 7.6 Hz, 1 H), 6.99 (m, 2 H), 4.21–4.16 (m, 1 H), 2.75–2.62 (m, 2 H), 2.12–2.18 (m, 1 H), 1.08 (d, J = 6.8 Hz, 3 H), 1.05 (t, J = 6.8 Hz, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 193.1, 162.0, 136.0, 127.0, 121.1, 121.0, 118.0, 82.6, 40.1, 32.2, 17.92, 17.90 ppm. 2-(2-Fluorophenyl)chroman-4-one (3i) Light yellow oil, 0.0582 g, 60% yield. 1H NMR (400 MHz, CDCl3): δ = 7.95 (d, J = 7.6 Hz, 1 H), 7.64 (dd, J = 7.6, 7.6 Hz, 1 H), 7.52 (dd, J = 8.6, 8.0 Hz, 1 H), 7.40–7.32 (m, 1 H), 7.27–7.20 (m, 1 H), 7.14–7.04 (m, 3 H), 5.79 (dd, J = 13.2, 2.8 Hz, 1 H), 3.06 (dd, J = 16.8, 13.2 Hz, 1 H), 2.93 (dd, J = 16.8, 3.2 Hz, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 191.6, 161.6, 159.7 (d, JC–F = 246.0 Hz), 136.3, 130.3 (d, JC–F = 9.0 Hz), 127.6 (d, JC–F = 4.0 Hz), 127.2, 126.3 (d, JC–F = 13.0 Hz), 124.7 (d, JC–F = 3.0 Hz), 121.9, 121.0, 118.2, 115.8 (d, JC–F = 21.0 Hz), 73.9 (d, JC–F = 3.0 Hz), 43.8 ppm.19F NMR (470 MHz, CDCl3): δ = –121.8 ppm.
For selected reports, see:
For selected reports, see:
For selected reports, see: