RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2017; 28(19): 2577-2580
DOI: 10.1055/s-0036-1588568
DOI: 10.1055/s-0036-1588568
cluster
Chromium-Catalyzed, Regioselective Cross-Coupling of C–O Bonds by Using Organic Bromides as Reactants
We thank the National Natural Science Foundation of China, SCU, and Beijing National Laboratory for Molecular Sciences for financial support.Weitere Informationen
Publikationsverlauf
Received: 01. Juli 2017
Accepted after revision: 22. August 2017
Publikationsdatum:
14. September 2017 (online)
Published as part of the Cluster C–O Activation
Abstract
We report a chromium-catalyzed cross-coupling of C–O bonds with widely accessible organic bromides as reactants for the preparation of ortho-arylated or -alkylated aromatic aldehydes at room temperature. The use of metallic magnesium is essential for the reaction to occur, giving it an advantage over previous reactions involving Grignard reagents that have to be prepared separately from organic halides before the coupling.
Key words
chromium - C–O activation - cross-coupling - C–C bond formation - organic bromides - regioselectivitySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588568.
- Supporting Information
-
References and Notes
- 1 Johansson Seechurn CC. C. Kitching MO. Colacot TJ. Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
- 2 Metal-Catalyzed Cross-Coupling Reactions . 2nd ed; . de Meijere A. Diederich F. Wiley-VCH; Weinheim: 2004
- 3 Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals. Vol. 1. Wiley-VCH; Weinheim: 2004
- 4 Wenkert E. Michelotti EL. Swindell CS. J. Am. Chem. Soc. 1979; 101: 2246
- 5 Cornella J. Zarate C. Martin R. Chem. Soc. Rev. 2014; 43: 8081
- 6 Tobisu M. Chatani N. Acc. Chem. Res. 2015; 48: 1717
- 7 Li B.-J. Yu D.-G. Sun C.-L. Shi Z.-J. Chem. Eur. J. 2011; 17: 1728
- 8 Rosen BM. Quasdorf KW. Wilson DA. Zhang N. Resmerita A.-M. Garg NK. Percec V. Chem. Rev. 2011; 111: 1346
- 9 Tobisu M. Chatani N. Top. Organomet. Chem. 2012; 44: 35
- 10 Su B. Cao Z.-C. Shi Z.-J. Acc. Chem. Res. 2015; 48: 886
- 11a Ohtsuki A. Sakurai S. Tobisu M. Chatani N. Chem. Lett. 2016; 45: 1277
- 11b Tobisu M. Takahira T. Morioka T. Chatani N. J. Am. Chem. Soc. 2016; 138: 6711
- 11c Nakamura K. Tobisu M. Chatani N. Org. Lett. 2015; 17: 6142
- 11d Tobisu M. Takahira T. Chatani N. Org. Lett. 2015; 17: 4352
- 11e Tobisu M. Morioka T. Ohtsuki A. Chatani N. Chem. Sci. 2015; 6: 3410
- 11f Morioka T. Nishizawa A. Nakamura K. Tobisu M. Chatani N. Chem. Lett. 2015; 44: 1729
- 11g Tobisu M. Yasutome A. Kinuta H. Nakamura K. Chatani N. Org. Lett. 2014; 16: 5572
- 11h Tobisu M. Yamakawa K. Shimasaki T. Chatani N. Chem. Commun. 2011; 47: 2946
- 11i Tobisu M. Shimasaki T. Chatani N. Chem. Lett. 2009; 38: 710
- 11j Tobisu M. Shimasaki T. Chatani N. Angew. Chem. Int. Ed. 2008; 47: 4866
- 11k Tobisu M. Takahira T. Ohtsuki A. Chatani N. Org. Lett. 2015; 17: 680
- 12 Dankwardt JW. Angew. Chem. Int. Ed. 2004; 43: 2428
- 13a Kondo H. Kochi T. Kakiuchi F. Org. Lett. 2017; 19: 794
- 13b Kondo H. Akiba N. Kochi T. Kakiuchi F. Angew. Chem., Int. Ed. 2015; 54: 9293
- 13c Ogiwara Y. Kochi T. Kakiuchi F. Org. Lett. 2011; 13: 3254
- 13d Ueno S. Mizushima E. Chatani N. Kakiuchi F. J. Am. Chem. Soc. 2006; 128: 16516
- 13e Kakiuchi F. Usui M. Ueno S. Chatani N. Murai S. J. Am. Chem. Soc. 2004; 126: 2706
- 14a Cao Z.-C. Shi Z.-J. J. Am. Chem. Soc. 2017; 139: 6546
- 14b Zhao F. Zhang Y.-F. Wen J. Yu D.-G. Wei J.-B. Xi Z. Shi Z.-J. Org. Lett. 2013; 15: 3230
- 14c Yu D.-G. Wang X. Zhu R.-Y. Luo S. Zhang X.-B. Wang B.-Q. Wang L. Shi Z.-J. J. Am. Chem. Soc. 2012; 134: 14638
- 14d Yu D.-G. Shi Z.-J. Angew. Chem. Int. Ed. 2011; 50: 7097
- 14e Yu D.-G. Yu M. Guan B.-T. Li B.-J. Zheng Y. Wu Z.-H. Shi Z.-J. Org. Lett. 2009; 11: 3374
- 14f Li B.-J. Xu L. Wu Z.-H. Guan B.-T. Sun C.-L. Wang B.-Q. Shi Z.-J. J. Am. Chem. Soc. 2009; 131: 14656
- 14g Guan B.-T. Wang Y. Li B.-J. Yu D.-G. Shi Z.-J. J. Am. Chem. Soc. 2008; 130: 14468
- 14h Guan B.-T. Xiang S.-K. Wang B.-Q. Sun Z.-P. Wang Y. Zhao K.-Q. Shi Z.-J. J. Am. Chem. Soc. 2008; 130: 3268
- 14i Guan B.-T. Xiang S.-K. Wu T. Sun Z.-P. Wang B.-Q. Zhao K.-Q. Shi Z.-J. Chem. Commun. 2008; 1437
- 15a Gu Y. Martin R. Angew. Chem. Int. Ed. 2017; 56: 3187
- 15b Zarate C. Nakajima M. Martin R. J. Am. Chem. Soc. 2017; 139: 1191
- 15c Zarate C. Manzano R. Martin R. J. Am. Chem. Soc. 2015; 137: 6754
- 15d Cornella J. Jackson EP. Martin R. Angew. Chem. Int. Ed. 2015; 54: 4075
- 15e Correa A. Martin R. J. Am. Chem. Soc. 2014; 136: 7253
- 15f Zarate C. Martin R. J. Am. Chem. Soc. 2014; 136: 2236
- 15g Cornella J. Gómez-Bengoa E. Martin R. J. Am. Chem. Soc. 2013; 135: 1997
- 16a Guo L. Liu X. Baumann C. Rueping M. Angew. Chem. Int. Ed. 2016; 55: 15415
- 16b Liu X. Hsiao C.-C. Kalvet I. Leiendecker M. Guo L. Schoenebeck F. Rueping M. Angew. Chem. Int. Ed. 2016; 55: 6093
- 17a Zhao Y. Snieckus V. J. Am. Chem. Soc. 2014; 136: 11224
- 17b Zhao Y. Snieckus V. Org. Lett. 2015; 17: 4674
- 18a Tobisu M. Yasui K. Aihara Y. Chatani N. Angew. Chem. Int. Ed. 2017; 56: 1877
- 18b Kinuta H. Tobisu M. Chatani N. J. Am. Chem. Soc. 2015; 137: 1593
- 19 Cong X. Tang H. Zeng X. J. Am. Chem. Soc. 2015; 137: 14367
- 20 Cao Z.-C. Luo Q.-Y. Shi Z.-J. Org. Lett. 2016; 18: 5978
- 21a Czaplik WM. Mayer M. von Wangelin AJ. Angew. Chem. Int. Ed. 2009; 48: 607
- 21b Ilies L. Kobayashi M. Matsumoto A. Yoshikai N. Nakamura E. Adv. Synth. Catal. 2012; 354: 593
- 21c Liu J.-H. Yang C.-T. Lu X.-Y. Zhang Z.-Q. Xu L. Cui M. Lu X. Xiao B. Fu Y. Liu L. Chem. Eur. J. 2014; 20: 15334
- 21d Li Z. Sun H.-M. Shen Q. Org. Biomol. Chem. 2016; 14: 3314
- 22 o-Arylated Arylcarbaldehydes 3a–m; General Procedure A dried Schlenk tube was charged with (o-methoxyaryl)aldimine 1 (0.2 mmol), Mg (11 mg, 0.44 mmol), and CrCl2 (3 mg, 0.02 mmol). The appropriate aryl bromide 2 (0.4 mmol) was added by a syringe under N2. THF (2 mL) was then added, and the mixture was stirred at r.t. for 12 h. The reaction was quenched with 3 N HCl (1 mL), and the resulting mixture was stirred at r.t. for another 0.5 h and then extracted with EtOAc (3 × 10 mL). The organic layers were combined, dried (Na2SO4), and concentrated under vacuum to give a crude product that was purified by chromatography (silica gel) 1,1′:4′,1′′-Terphenyl-2-carbaldehyde (3b) Prepared by the general procedure from imine 1a (38 mg, 0.2 mmol) and 4-bromobiphenyl (2b). The crude product was purified by column chromatography [silica gel, EtOAc–PE (1:50)] to give a white solid; yield: 39 mg (75%); mp 111–113 °C; IR (neat): 3025, 2961, 2876, 1680, 1594, 1471, 1389, 1250, 1070, 1006, 856, 827 cm–1. 1H NMR (400 MHz, CDCl3): δ = 10.06 (s, 1 H), 8.04 (d, J = 8.0 Hz, 1 H), 7.71–7.65 (m, 5 H), 7.53–7.45 (m, 6 H), 7.37 (t, J = 7.2 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 192.6, 145.7, 141.2, 140.4, 136.8, 133.9, 133.8, 130.9, 130.7, 129.1, 128.0, 127.83, 127.82, 127.3.
- 23 Shi Z. Glorius F. Chem. Sci. 2013; 4: 829
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
Rh-catalyzed functionalizations of C–O bonds have been recently disclosed by Chatani and co-workers; see:
For examples of cross-coupling reactions using organic halides as reactants mediated by metallic magnesium, see: