Subscribe to RSS
DOI: 10.1055/s-0036-1588683
Unsymmetrical Diaryliodonium Salts as Aryne Synthons: Renaissance of a C–H Deprotonative Approach to Arynes
Publication History
Received: 16 November 2016
Accepted after revision: 06 December 2016
Publication Date:
22 December 2016 (online)
Dedicated to the memory of Prof. J. D. Roberts
Abstract
A regio- and chemoselective C–H deprotonative strategy toward arynes is described that employs a hypervalent iodine leaving group. The unsymmetrical aryl(mesityl)iodonium salts used as aryne precursors are readily synthesized from commercially available aryl iodide and arylboronic acid building blocks. The bases LiHMDS and NaOt-Bu engage the diaryliodonium salts in a deprotonation event at an aromatic C–H bond and the transient arynes react in cycloaddition reactions with furan and benzyl azide or nucleophilic addition reaction with alicyclic amines. The auxiliary component of aryl(auxiliary)iodonium salts can be sterically tuned to influence the regioselectivity of the C–H deprotonation event for meta-substituted aryl groups.
1 Introduction
2 Iodonium Salts as Aryne Precursors
3 Reaction Discovery and Optimization
4 Reaction Scope
5 Auxiliary-Controlled Regioselective Deprotonation
6 Beyond Cycloaddition with Furan
7 Conclusions and Outlook
-
References
- 1a Wenk HH, Winkler M, Sander W. Angew. Chem. Int. Ed. 2003; 42: 502
-
1b Bhunia A, Yetra SR, Biju AT. Chem. Soc. Rev. 2012; 41: 3140
- 1c Gampe CE, Carreira EM. Angew. Chem. Int. Ed. 2012; 51: 3766
- 1d Tadross PM, Stoltz BM. Chem. Rev. 2012; 112: 3550
- 1e Dubrovskiy AV, Markina NA, Larock RC. Org. Biomol. Chem. 2013; 11: 191
- 1f Yoshida S, Hosoya T. Chem. Lett. 2015; 44: 1450
- 2a Bronner SM, Mackey JL, Houk KN, Garg NK. J. Am. Chem. Soc. 2012; 134: 13966
- 2b Medina JM, Mackey JL, Garg NK, Houk KN. J. Am. Chem. Soc. 2014; 136: 15798
- 2c Picazo E, Houk KN, Garg NK. Tetrahedron Lett. 2015; 56: 3511
- 3 For a leading reference, see: Bhojgude SS, Bhunia A, Biju AT. Acc. Chem. Res. 2016; 49: 1658
- 4a Roberts JD, Simmons HE. Jr, Carlsmith LA, Vaughan CW. J. Am. Chem. Soc. 1953; 75: 3290
- 4b Stiles M, Miller RG, Burckardt U. J. Am. Chem. Soc. 1963; 85: 1792
- 4c Campbell CD, Rees CW. J. Chem. Soc. C 1969; 742
- 4d Himeshima Y, Sonoda T, Kobayashi H. Chem. Lett. 1983; 1211
- 5a Kitamura T, Yamane M. J. Chem. Soc., Chem. Commun. 1995; 983
- 5b Michael B, Greaney MF. Org. Lett. 2014; 16: 2684
- 6a Sumida Y, Kato T, Hosoya T. Org. Lett. 2013; 15: 2806
- 6b Ikawa T, Yamamoto R, Takagi A, Ito T, Shimizu K, Goto M, Hamashima Y, Akai S. Adv. Synth. Catal. 2015; 357: 2287
- 7 Yoshida S, Hazama Y, Sumida Y, Yano T, Hosoya T. Molecules 2015; 20: 10131
- 8a Bunnett JF, Kearley FJ. Jr. J. Org. Chem. 1971; 36: 184
- 8b Rao UN, Maguire J, Biehl E. ARKIVOC 2004; (i): 88
- 8c Dong Y, Lipschutz MI, Tiley TD. Org. Lett. 2016; 18: 1530
- 9a Akiyama T, Imasaki Y, Kawanisi M. Chem. Lett. 1974; 229
- 9b Cadogan JI. G, Rowley AG, Sharp JT, Sledzinski B, Wilson NH. J. Chem. Soc., Perkin Trans. 1 1975; 1072
- 9c Wang B, Graskemper JW, Qin L, DiMagno SG. Angew. Chem. Int. Ed. 2010; 49: 4079
- 9d Graskemper JW, Wang B, Qin L, Neumann KD, DiMagno SG. Org. Lett. 2011; 13: 3158
- 9e Ghosh R, Olofsson B. Org. Lett. 2014; 16: 1830
- 9f Lindstedt E, Stridfeldt E, Olofsson B. Org. Lett. 2016; 18: 4234
- 10a Deprez NR, Sanford MS. Inorg. Chem. 2007; 46: 1924
-
10b Merritt EA, Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052
- 10c Olofsson B. Top. Curr. Chem. 2016; 373: 135
- 11a Bielawski M, Zhu M, Olofsson B. Adv. Synth. Catal. 2007; 349: 2610
- 11b Bielawski M, Aili D, Olofsson B. J. Org. Chem. 2008; 73: 4602
- 11c Seidl TL, Sundalam SK, McCullough B, Stuart DR. J. Org. Chem. 2016; 81: 1998
- 11d Ochiai M, Toyonari M, Nagaoka T, Chen D.-W, Kida M. Tetrahedron Lett. 1997; 38: 6709
- 11e Deprez NR, Kalyani D, Krause A, Sanford MS. J. Am. Chem. Soc. 2006; 128: 4927
- 12a Sundalam SK, Stuart DR. J. Org. Chem. 2015; 80: 6456
- 12b Sandtorv AH, Stuart DR. Angew. Chem. Int. Ed. 2016; 55: 15812
- 13 Sundalam SK, Nilova A, Seidl TL, Stuart DR. Angew. Chem. Int. Ed. 2016; 55: 8431
- 14 For other work with tert-butoxide as base to extrude arynes from diaryliodonium salts, see: Wang M, Huang Z. Org. Biomol. Chem. 2016; 14: 10185
- 15 Carlson R, Carlson JE. Design and Optimization in Organic Synthesis . 2nd ed. Elsevier; Amsterdam: 2005
- 16a Lucht BL, Collum DB. J. Am. Chem. Soc. 1995; 117: 9863
- 16b Lucht BL, Bernstein MP, Remenar JF, Collum DB. J. Am. Chem. Soc. 1996; 118: 10707
- 17 Shen K, Fu Y, Li J.-N, Liu L, Guo Q.-X. Tetrahedron 2007; 63: 1568
- 18 Kanishchev OS, Dolbier WR. Jr. J. Org. Chem. 2016; 81: 11305
- 19 Lautens M, Stammers TA. Synthesis 2002; 1993
- 20a Fleming MJ, Lautens M, Spielvogel D, Thommen M. EP2098511 A1, 2009
- 20b Fleming MJ, Lautens M, Spielvogel D, Thommen M. WO2009109648 A1, 2009
For reviews, see:
For seminal work from aryl halides, see:
For seminal work from phenyl azo-carboxylates, see:
For seminal work from phenyl triazoles, see:
For seminal work from o-(trimethylsilyl)phenyl triflate, see:
For studies on regioselectivity of C–H deprotonation and chemoselective halide ejection from dihaloarenes, see:
For recent use of C–H deprotonation approach to arynes, see:
For reviews specifically on diaryliodonium salts, including aryl(mesityl)iodonium salts, see:
From aryl iodides, see:
From arylboronic acids, see:
New hydronaphthalene compounds useful for preparing active pharmaceutical ingredients, for example, (6S)-5,6,7,8-tetrahydro-6-{propyl[2-(2-thienyl)ethyl]amino}-1-naphthalenol: