Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(13): 1548-1553
DOI: 10.1055/s-0036-1588761
DOI: 10.1055/s-0036-1588761
cluster
Development of 3,5-Di-tert-butylphenol as a Model Substrate for Biomimetic Aerobic Copper Catalysis
Further Information
Publication History
Received: 17 January 2017
Accepted after revision: 28 February 2017
Publication Date:
28 March 2017 (online)
† In memoriam
Abstract
We develop 3,5-di-tertbutylphenol as a strategic substrate for the evaluation of biomimetic Cu2–O2 complexes intended to mimic the activity of tyrosinase. We describe a practical and scalable synthesis and validate its use in an aerobic ortho-oxygenation catalyzed by N,N′-di-tert-butylethylenediamine and [Cu(CH3CN)4]PF6.
Key words
aerobic oxidation - biomimetic catalysis - copper - dearomatization - tyrosinase - oxidative coupling - oxepinobenzofuranSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588761.
- Supporting Information
-
References and Notes
- 1a Que L. Tolman WB. Nature (London, U.K.) 2008; 455: 333
- 1b McCann SD. Stahl SS. Acc. Chem. Res. 2015; 48: 1756
- 2a Allen SE. Walvoord RR. Padilla-Salinas R. Kozlowski MC. Chem. Rev. 2013; 113: 6234
- 2b Schultz MJ. Sigman MS. Tetrahedron 2006; 62: 8227
- 2c Wendlandt AE. Suess AM. Stahl SS. Angew. Chem. Int. Ed. 2011; 50: 11062
- 2d Campbell AN. Stahl SS. Acc. Chem. Res. 2012; 45: 851
- 2e Zhang C. Tang C. Jiao N. Chem. Soc. Rev. 2012; 41: 3464
- 2f Shi Z. Zhang C. Tang C. Jiao N. Chem. Soc. Rev. 2012; 41: 3381
- 2g Gulzar N. Schweitzer-Chaput B. Klussmann M. Catal. Sci. Technol. 2014; 4: 2778
- 3 Roduner E. Kaim W. Sarkar B. Urlacher VB. Pleiss J. Gläser R. Einicke W.-D. Sprenger GA. Beifuß U. Klemm E. Liebner C. Hieronymus H. Hsu S.-F. Plietker B. Laschat S. ChemCatChem 2013; 5: 82
- 4 Altwicker ER. Chem. Rev. 1967; 67: 475
- 5a Ryland BL. Stahl SS. Angew. Chem. Int. Ed. 2014; 53: 8824
- 5b Chen B. Wang L. Gao S. ACS Catal. 2015; 5: 5851
- 5c Steves JE. Stahl SS. J. Org. Chem. 2015; 80: 11184
- 5d Stahl SS. Alsters PL. Liquid Phase Aerobic Oxidation Catalysis: Industrial Applications and Academic Perspectives. Wiley-VCH; Weinheim: 2016
- 5e Xu B. Hartigan EM. Feula G. Huang Z. Lumb J.-P. Arndtsen BA. Angew. Chem. Int. Ed. 2016; 55: 15802
- 5f Hoover JM. Stahl SS. J. Am. Chem. Soc. 2011; 133: 16901
- 5g Esguerra KV. N. Fall Y. Petitjean L. Lumb J.-P. J. Am. Chem. Soc. 2014; 136: 7662
- 5h Lee YE. Cao T. Torruellas C. Kozlowski MC. J. Am. Chem. Soc. 2014; 136: 6782
- 6 Solomon EI. Heppner DE. Johnston EM. Ginsbach JW. Cirera J. Qayyum M. Kieber-Emmons MT. Kjaergaard CH. Hadt RG. Tian L. Chem. Rev. 2014; 114: 3659
- 7a Rolff M. Schottenheim J. Decker H. Tuczek F. Chem. Soc. Rev. 2011; 40: 4077
- 7b Hamann JN. Herzigkeit B. Jurgeleit R. Tuczek F. Coord. Chem. Rev. 2017; 334: 54
- 8a Sugumaran M. FEBS Lett. 1991; 295: 233
- 8b Mahadevan V. Gebbink RJ. M. K. Stack TD. P. Curr. Opin. Chem. Biol. 2000; 4: 228
- 8c Simon JD. Peles D. Wakamatsu K. Ito S. Pigm. Cell Melanoma Res. 2009; 2: 563
- 8d Loizzo MR. Tundis R. Menichini F. Compr. Rev. Food Sci. Food Saf. 2012; 11: 378
- 9a Reglier M. Jorand C. Waegell B. J. Chem. Soc., Chem. Commun. 1990; 1752
- 9b Battaini G. Carolis MD. Monzani E. Tuczek F. Casella L. Chem. Commun. 2003; 726
- 9c Mirica LM. Vance M. Rudd DJ. Hedman B. Hodgson KO. Solomon EI. Stack TD. P. Science 2005; 308: 1890
- 9d Op’t Holt BT. Vance MA. Mirica LM. Heppner DE. Stack TD. P. Solomon EI. J. Am. Chem. Soc. 2009; 131: 6421
- 9e Esguerra KV. N. Fall Y. Lumb J.-P. Angew. Chem. Int. Ed. 2014; 53: 5877
- 9f Itoh S. Kumei H. Taki M. Nagatomo S. Kitagawa T. Fukuzumi S. J. Am. Chem. Soc. 2001; 123: 6708
- 9g Hoffmann A. Citek C. Binder S. Goos A. Rübhausen M. Troeppner O. Ivanović-Burmazović I. Wasinger EC. Stack TD. P. Herres-Pawlis S. Angew. Chem. Int. Ed. 2013; 52: 5398
- 9h Arnold A. Metzinger R. Limberg C. Chem. Eur. J. 2015; 21: 1198
- 10a Mirica LM. Ottenwaelder X. Stack TD. P. Chem. Rev. 2004; 104: 1013
- 10b Lewis EA. Tolman WB. Chem. Rev. 2004; 104: 1047
- 11a Magdziak D. Rodriguez AA. Van De Water RW. Pettus TR. R. Org. Lett. 2002; 4: 285
- 11b Finley KT. Quinones as Synthones . In The Quinonoid Compounds (1988) . John Wiley & Sons; New York: 2010. Chap. 11, 537
- 11c Fishwick CW. G. Jones DW. ortho-Quinonoid Compounds. In The Quinonoid Compounds (1988) . John Wiley & Sons; New York: 2010. Chap. 9, 403
- 11d Uyanik M. Mutsuga T. Ishihara K. Molecules 2012; 17: 8604
- 12 Verma P. Weir J. Mirica L. Stack TD. P. Inorg. Chem. 2011; 50: 9816
- 13 Corey EJ. Achiwa K. J. Am. Chem. Soc. 1969; 91: 1429
- 14 Osako T. Ohkubo K. Taki M. Tachi Y. Fukuzumi S. Itoh S. J. Am. Chem. Soc. 2003; 125: 11027
- 15 Armstrong DR. Cameron C. Nonhebel DC. Perkins PG. J. Chem. Soc., Perkin Trans. 2 1983; 587
- 16 Askari MS. Esguerra KV. N. Lumb J.-P. Ottenwaelder X. Inorg. Chem. 2015; 54: 8665
- 17a Marín-Zamora ME. Rojas-Melgarejo F. García-Cánovas F. García-Ruiz PA. J. Biotechnol. 2009; 139: 163
- 17b Guazzaroni M. Crestini C. Saladino R. Bioorg. Med. Chem. 2012; 20: 157
- 18 Müller E. Mayer R. Narr B. Rieker A. Scheffler K. Justus Liebigs Ann. Chem. 1961; 645: 25
- 19 Meier H. Schneider H.-P. Rieker A. Hitchcock PB. Angew. Chem. 1978; 90: 128
- 20 Rayne S. Forest K. Struct. Chem. 2011; 22: 615
- 21a Hewgill FR. La Greca B. Legge F. Roga PE. J. Chem. Soc., Perkin Trans. 1 1983; 131
- 21b Rayne S. Sasaki R. Wan P. Photochem. Photobiol. Sci. 2005; 4: 876
- 21c Haack P. Kärgel A. Greco C. Dokic J. Braun B. Pfaff FF. Mebs S. Ray K. Limberg C. J. Am. Chem. Soc. 2013; 135: 16148
- 22 CCDC 1527150 (3), 1527151 (7), and 1527152 (7a) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 23 $157.50 CAD/mg at the time of writing, Sigma-Aldrich catalogue #PH000046.
- 24 Izawa Y. Pun D. Stahl SS. Science 2011; 333: 209
- 25a Xia S. Gan L. Wang K. Li Z. Ma D. J. Am. Chem. Soc. 2016; 138: 13493
- 25b Chen Y. Zou Y. Sun H.-Y. Liu X.-K. Xiao C.-F. Sun J. He S.-J. Li J. Synthesis 2011; 217
- 25c Chen J. Yuan T. Hao W. Cai M. Catal. Commun. 2011; 12: 1463
- 25d Wang Y. Zhou C. Wang R. Green Chem. 2015; 17: 3910
- 25e Elder JW. Mariella RP. Can. J. Chem. 1963; 41: 1653
- 26a Norberg AM. Smith MR. III. Maleczka RE. Jr. Synthesis 2011; 857
- 26b Maleczka RE. Shi F. Holmes D. Smith MR. J. Am. Chem. Soc. 2003; 125: 7792
- 27 Synthesis of 3 via Borylation and Oxidation NOTE – caution should always be taken when performing large-scale oxidations. Risks are minimized here by carefully controlling the rate of addition of Oxone®. A 250 mL round-bottom flask equipped with a Teflon-coated magnetic stir bar was charged with 8 (26.9 g, 100 mmol, 1 equiv), Mg turnings (3.65 g, 150 mmol, 1.5 equiv), and a piece of I2 crystal. The reaction was put under N2, and dry, degassed THF (100 mL) was added to the flask. The mixture was stirred at r.t. until initiation of the reaction was visible. An ice bath was used for cooling the reaction in the event that the temperature rose too high. In a separate 500 mL round-bottom flask equipped with a Teflon-coated magnetic stir bar, B(OMe)3 (21.2 mL, 200 mmol, 2 equiv) was added via syringe, followed by the addition of THF (100 mL). The solution was cooled to 0 °C using an ice bath, and stirred under N2. The THF solution of the Grignard reagent was transferred to the cooled flask containing the B(OMe)3 solution via cannula. Once the addition was complete, the reaction was stirred vigorously and warmed back to r.t. for 2 h. The reaction was then cooled back down to 0 °C and quenched by the addition of 1 M HCl (80 mL). The solution was extracted using EtOAc (3 × 200 mL), the organic layers were combined, and dried over MgSO4. The crude reaction mixture was concentrated in vacuo to give a yellow solid. This was transferred to a 2 L round-bottom flask equipped with a Teflon-coated magnetic stir bar, re-dissolved in acetone (600 mL), and an aq solution of Oxone® (61.5 g, 200 mmol, 2 equiv in 600 mL H2O) was added dropwise at r.t. over 1 h, and stirred for another 7 min. The reaction was then carefully quenched by the addition of sat. aq NaHSO3 (200 mL), and concentrated in vacuo to remove most of the acetone. The crude reaction mixture was extracted with CH2Cl2 (3 × 200 mL), the organic layers were combined, dried over MgSO4, and concentrated in vacuo to obtain a yellow solid. Flash column chromatography (hexanes–EtOAc, gradient from 100:0 to 90:10) yielded 3 as a yellow solid (18.7 g, 90% before recrystallization), and it was recrystallized from hexanes (50 mL) to yield pure 8 as colorless crystals (16.5 g, 80%). 1H NMR (500 MHz, CDCl3): δ = 7.00 (t, J = 1.7 Hz, 1 H), 6.68 (d, J = 1.7 Hz, 2 H), 4.52 (br s, 1 H), 1.30 (s, 18 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 154.8, 152.7, 115.2, 110.0, 34.9, 31.5 ppm. Analytical data matches that of the commercially available material.
- 28 Xu B. Lumb J.-P. Arndtsen BA. Angew. Chem. Int. Ed. 2015; 54: 4208
For selected reviews and references of aerobic alcohol and amine oxidations, see:
For selected examples of enzyme-inspired selective aerobic oxidations, see: