Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(13): 1501-1509
DOI: 10.1055/s-0036-1588827
DOI: 10.1055/s-0036-1588827
synpacts
Lewis Acid Catalyzed Carbonyl–Olefin Metathesis
We thank the Petroleum Research Fund (PRF#54688-DNI1), the University of Michigan Office of Research, and the NIH/National Institute of General Medical Sciences (GM118644) for financial support. C.S.S. thanks the David and Lucile Packard Foundation. J.R.L. thanks the National Science Foundation for a predoctoral fellowship.Further Information
Publication History
Received: 27 February 2017
Accepted after revision: 10 April 2017
Publication Date:
16 May 2017 (online)
Abstract
Olefin–olefin metathesis has led to important advances in diverse fields of research, including synthetic chemistry, materials science, and chemical biology. The corresponding carbonyl–olefin metathesis also enables direct carbon–carbon bond formation from readily available precursors, however, currently available synthetic procedures are significantly less advanced. This Synpacts article provides an overview of recent achievements in the field of Lewis acid mediated and Lewis acid catalyzed carbonyl–olefin metathesis reactions.
1 Lewis Acid Mediated Carbonyl–Olefin Metathesis
2 Lewis Acid Catalyzed Carbonyl–Olefin Metathesis
-
References
- 1 Grubbs RH. Wenzel AG. Handbook of Metathesis. 2nd ed. Vol. 1 Wiley-VCH; Weinheim: 2015
- 2a Schopov I. Jossifov C. Makromol. Chem., Rapid Commun. 1983; 4: 659
- 2b Fu GC. Grubbs RH. J. Am. Chem. Soc. 1993; 115: 3800
- 3a Jones GII. Schwartz SB. Marton MT. J. Chem. Soc., Chem. Commun. 1973; 11: 374
- 3b Jones GII. Acquadro MA. Carmody MA. J. Chem. Soc., Chem. Commun. 1975; 6: 206
- 3c Carless HA. J. Trivedi HS. J. Chem. Soc., Chem. Commun. 1979; 8: 382
- 3d D’Auria M. Racioppi R. Viggiani L. Photochem. Photobiol. Sci. 2010; 9: 1134
- 3e Pérez-Ruiz R. Gil S. Miranda MA. J. Org. Chem. 2005; 70: 1376
- 3f Pérez-Ruiz R. Miranda MA. Alle R. Meerholz K. Griesbeck AG. Photochem. Photobiol. Sci. 2006; 5: 51
- 3g Valiulin RA. Arisco TM. Kutateladze AG. J. Org. Chem. 2011; 76: 1319
- 3h Valiulin RA. Arisco TM. Kutateladze AG. J. Org. Chem. 2013; 78: 2012
- 4a Griffith AK. Vanos CM. Lambert TH. J. Am. Chem. Soc. 2012; 134: 18581
- 4b Hong X. Liang Y. Griffith AK. Lambert TH. Houk KN. Chem. Sci. 2014; 5: 471
- 5a Stille JR. Grubbs RH. J. Am. Chem. Soc. 1986; 108: 855
- 5b Stille JR. Santarsiero BD. Grubbs RH. J. Org. Chem. 1990; 55: 843
- 5c Nicolaou KC. Postema MH. D. Claiborne CF. J. Am. Chem. Soc. 1996; 118: 1565
- 5d Rainier JD. Allwein SP. J. Org. Chem. 1998; 63: 5310
- 5e Rainier JD. Allwein SP. Cox JM. J. Org. Chem. 2001; 66: 1380
- 5f Majumder U. Rainier JD. Tetrahedron Lett. 2005; 46: 7209
- 5g Iyer K. Rainier JD. J. Am. Chem. Soc. 2007; 129: 12604
- 5h Heller ST. Kiho T. Narayan AR. H. Sarpong R. Angew. Chem. Int. Ed. 2013; 52: 11129
- 5i Hong B. Li H. Wu J. Zhang J. Lei X. Angew. Chem. Int. Ed. 2015; 54: 1011
- 6 For a related approach, see: Ma L. Li W. Xi H. Bai X. Ma E. Yan X. Li Z. Angew. Chem. Int. Ed. 2016; 55: 10410
- 7 Demole E. Enggist P. Borer MC. Helv. Chim. Acta 1971; 54: 1845
- 8 Jackson AC. Goldman BE. Snider BB. J. Org. Chem. 1984; 49: 3988
- 9 van Schaik H.-P. Vijn R.-J. Bickelhaupt F. Angew. Chem. Int. Ed. 1994; 33: 1611
- 10 Lee K.-Y. Ko K.-Y. Bull. Korean Chem. Soc. 2004; 25: 1929
- 11 Khripach VA. Zhabinskii VN. Kuchto AI. Zhiburtovich YY. Gromak VV. Groen MB. van der Louw J. de Groot A. Tetrahedron Lett. 2006; 47: 6715
- 12 Soicke A. Slavov N. Neudörfl J.-M. Schmalz H.-G. Synlett 2011; 2487
- 13 Naidu VR. Bah J. Franzén J. Eur. J. Org. Chem. 2015; 1834
- 14a This work was first reported as Ludwig J. R., Gianino J. B., Schindler C., Abstracts of Papers, 250th ACS National Meeting & Exposition, Boston, MA, United States, August 16th–20th, 2015, ORGN-388.
- 14b Ludwig JR. Zimmerman PM. Gianino JB. Schindler CS. Nature (London, U.K.) 2016; 533: 374
- 15a Zimmerman PM. J. Comput. Chem. 2013; 34: 1385
- 15b Zimmerman PM. J. Chem. Theory Comput. 2013; 9: 3043
- 16 McAtee CC. Riehl PS. Schindler CS. J. Am. Chem. Soc. 2017; 139: 2960
For metal-mediated carbonyl-olefin metathesis reactions, see:
For carbonyl–olefin metathesis reactions proceeding via oxetane photoadducts, see:
For catalytic carbonyl–olefin metathesis reactions proceeding via [3+2]/retro-[3+2] cycloaddition, see:
For the appliation of carbonyl–olefin metathesis in complex molecule synthesis, see: