Synlett 2017; 28(15): 1956-1960
DOI: 10.1055/s-0036-1588862
cluster
© Georg Thieme Verlag Stuttgart · New York

Preparation of Peptide o-Aminoanilides Using a Modified Dawson's Linker for Microwave-Assisted Peptide Synthesis

Shugo Tsuda*
a   Peptide Institute, Inc., 7-2-9 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan   eMail: tsuda@peptide.co.jp   eMail: t.yoshiya@peptide.co.jp
,
Tsuyoshi Uemura
a   Peptide Institute, Inc., 7-2-9 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan   eMail: tsuda@peptide.co.jp   eMail: t.yoshiya@peptide.co.jp
,
Masayoshi Mochizuki
a   Peptide Institute, Inc., 7-2-9 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan   eMail: tsuda@peptide.co.jp   eMail: t.yoshiya@peptide.co.jp
,
Hideki Nishio
a   Peptide Institute, Inc., 7-2-9 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan   eMail: tsuda@peptide.co.jp   eMail: t.yoshiya@peptide.co.jp
b   Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
,
a   Peptide Institute, Inc., 7-2-9 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan   eMail: tsuda@peptide.co.jp   eMail: t.yoshiya@peptide.co.jp
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 03. April 2017

Accepted after revision: 15. Mai 2017

Publikationsdatum:
21. Juni 2017 (online)


Published as part of the Cluster Recent Advances in Protein and Peptide Synthesis

Abstract

Based on the structure of Dawson’s 3,4-diaminobenzoic acid (Dbz) linker designed for Fmoc solid-phase peptide-thioester synthesis, the 4-amino-3-nitrobenzoic acid [Dbz(NO2)] linker was developed for microwave-assisted synthesis. The Dbz(NO2) linker can be readily converted into the Dbz linker by on-resin reduction with SnCl2 after construction of the protected peptide resin. Although epimerization of C-terminal amino acid restricts the use of Dbz(NO2) linker to the synthesis of peptide-Gly-thioester, use of this linker can prevent side reactions that arise when Dbz or Dbz(Aloc) linkers are used in the microwave-assisted synthesis of Gly-rich peptides.

Supporting Information

 
  • References and Notes

  • 4 Bang D. Pentelute BL. Kent SB. H. Angew. Chem. Int. Ed. 2006; 45: 3985
  • 6 Blanco-Canosa JB. Dawson PE. Angew. Chem. Int. Ed. 2008; 47: 6851
  • 7 Wang JX. Fang GM. He Y. Qu DL. Yu M. Hong ZY. Liu L. Angew. Chem. Int. Ed. 2015; 54: 2194
  • 12 Blanco-Canosa JB. Nardone B. Albericio F. Dawson PE. J. Am. Chem. Soc. 2015; 137: 7197
  • 14 Hojo K. Maeda M. Iguchi S. Smith T. Okamoto H. Kawasaki K. Chem. Pharm. Bull. 2000; 48: 1740
  • 15 The reason of this low nucleophilicity is speculated as follows. The original Dawson’s linker (3,4-diaminobenzoic acid, Dbz) usually uses 3-amino group for peptide-chain elongation, which might be more reactive than the 4-amino group. In our Dbz(NO2) linker, the 3-amino group is replaced with nitro group, and the 3-nitro group further decreases the remaining 4-amino group.
  • 16 Rijkers DT. S. Adams HP. H. M. Hemker HC. Tesser GI. Tetrahedron 1995; 51: 11235
  • 17 Fujii K. Ikai Y. Oka H. Suzuki M. Harada K. Anal. Chem. 1997; 69: 5146
    • 18a Sakamoto K. Sato K. Shigenaga A. Tsuji K. Tsuda S. Hibino H. Nishiuchi Y. Otaka A. J. Org. Chem. 2012; 77: 6948
    • 18b Eto M. Naruse N. Morimoto K. Yamaoka K. Sato K. Tsuji K. Inokuma T. Shigenaga A. Otaka A. Org. Lett. 2016; 18: 4416 General Procedure Under Ar atmosphere, Fmoc-Xaa-OH (Xaa = Leu or Ser(t-Bu), 0.50 mmol) was coupled on an H-Dbz(NO2)-rink amide resin (45 mg, 0.025 mmol) using POCl3 (78 μL, 0.50 mmol) and 2,4,6-trimethylpyridine (66 μL, 0.50 mmol) in THF (4.0 mL) at 40 °C for 16 h. In case of Gly, Fmoc-Gly-OH (0.25 mmol) was coupled on an H-Dbz(NO2)-rink amide resin (45 mg, 0.025 mmol) using POCl3 (39 μL, 0.25 mmol) and 2,4,6-trimethylpyridine (33 μL, 0.25 mmol) in THF (4.0 mL) at 40 °C for 16 h under Ar atmosphere.
  • 19 Di Fenza A. Tancredi M. Galoppini C. Rovero P. Tetrahedron Lett. 1998; 39: 8529
  • 20 Resin 7: The peptide assemblies on the Fmoc-Gly-Dbz(NO2)-Leu-rink amide resin (0.10 mmol) were conducted using microwave-assisted Fmoc SPPS procedure as described in the Supporting Information. In order to evaluate peptide constructed on the resin, a part of the obtained resin 7 (5 mg) was treated with TFA/TIS/H2O (v/v, 95:2.5:2.5) for 1.5 h to yield a corresponding deprotected peptide. Analytical HPLC: t R = 14.2 min (10–60% MeCN/0.1% TFA for 25 min); LRMS (ESI+): m/z calcd for C45H67N14O13 [M + H]+ 1011.5; found: 1011.5. Compound 9: Resin 7 (0.10 mmol) was treated with 6 M SnCl2, 10 mM HCl/MeOH in DMF for 3 h. Resin 8 thus obtained was treated with TFA/TIS/H2O (v/v, 95:2.5:2.5) for 1.5 h to give a crude product 9. Analytical HPLC: t R = 12.1 min (10–60% MeCN/0.1% TFA for 25 min); LRMS (ESI+): m/z calcd for C45H69N14O11 [M + H]+: 981.5; found: 981.6. Compound 10: Crude 9 was activated using NaNO2, and thioesterified with sodium 2-sulfanylethanesulfonate to give the title compound. Analytical HPLC: t R = 8.5 min (10–60% MeCN/0.1% TFA for 25 min); LRMS (ESI+): m/z calcd for C45H69N14O11 [M + H]+: 859.3; found: 859.4. Compound 11: Resin 8 (0.05 mmol) was activated as described in ref. 6. Then, the resin was treated with TFA/TIS/H2O (v/v, 95:2.5:2.5) for 1.5 h to give the title product. Analytical HPLC: t R = 13.4 min (10–60% MeCN/0.1% TFA for 25 min); LRMS (ESI+): m/z calcd for C46H67N14O12 [M + H]+: 1007.5; found: 1007.5.
  • 21 Shichiri M. Ishimaru S. Ota T. Nishikawa T. Isogai T. Hirata Y. Nat. Med. 2003; 9: 1166