Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(03): 583-592
DOI: 10.1055/s-0036-1589124
DOI: 10.1055/s-0036-1589124
paper
An Efficient Fe/H2O Medium in situ Reduction and Cyclization Reaction for the Synthesis of Pyrazolo[3,4-a]acridin-10-one and Pyrazolo[4,3-a]acridin-10-one Derivatives
We are grateful to National Natural Science Foundation of China (NSFC) (No. 51174201, 21571087), the Open Foundation of Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials (No. K201312), the Major Projects of Natural Science Research in Jiangsu Province (No. 15KJA150004), the Innovation Project for Graduate Student of Jiangsu Province (No. KYCX17_1587), the Priority Academic Program Development of Jiangsu Higher Education Institutions for financial support, and this work was also sponsored by TAPP.Further Information
Publication History
Received: 15 August 2017
Accepted after revision: 28 September 2017
Publication Date:
20 October 2017 (online)
Abstract
An efficient and simple method for the synthesis of pyrazolo[3,4-a]acridine and pyrazolo[4,3-a]acridine derivatives directly form nitro compounds by in situ reduction and cyclization reaction under Fe/H2O medium is reported. Compared to amino compounds, nitro compounds are more stable and easier to obtain. In addition, because iron is a nontoxic, inexpensive, and environmentally friendly reductant, this method is especially suitable for organic synthesis. The other advantages of this process are cheap raw materials, less pollution, and wide substrate range.
Key words
in situ reductions - nitro compounds - iron - pyrazolo-[3,4-a]-acridin-10-one - pyrazolo[4,3-a]acridin-10-oneSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1589124.
- Supporting Information
-
References
- 1a Jones G. In Comprehensive Heterocyclic Chemistry . Vol. 2. Katritzky AR. Rees CW. Pergamon; New York: 1984: 395
- 1b Balasubramanian M. Keay JG. In Comprehensive Heterocyclic Chemistry II . Vol. 5. Katritzky AR. Rees CW. Scriven EF. V. Pergamon; Oxford: 1996: 245
- 2a Michael JP. Nat. Prod. Rep. 2007; 24: 223
- 2b Jain M. Khan SI. Tekwani BL. Jacob MR. Singh S. Singh PP. Jain R. Bioorg. Med. Chem. 2005; 13: 4458
- 2c Lilienkampf A. Mao J. Wan B. Wang Y. Franzblau SG. Kozikowski AP. J. Med. Chem. 2009; 52: 2109
- 2d Chen S. Chen R. He M. Pang R. Tan Z. Yang M. Bioorg. Med. Chem. 2009; 17: 1948
- 3a Michael JP. Nat. Prod. Rep. 1997; 14: 605
- 3b Bray PG. Ward SA. O’Neil PM. Curr. Top. Microbiol. Immunol. 2005; 295: 3
- 3c Michael JP. Nat. Prod. Rep. 2005; 22: 627
- 4a Mowbray CE. Burt C. Corbau R. Gayton S. Hawes M. Perros M. Tran I. Price DA. Quinton FJ. Selby MD. Stupple PA. Webster R. Wood A. Bioorg. Med. Chem. Lett. 2009; 19: 5857
- 4b Wyatt PG. Woodhead AJ. Berdini V. Boulstridge JA. Carr MG. Cross DM. Davis DJ. Devine LA. Early TR. Feltell RE. Lewis EJ. MsMenamin RL. Navarro EF. O’Brien MA. O’Reilly M. Reule M. Saxty G. Seavers LA. Smith D.-M. Squires M. Trewartha G. Walker MT. Woolford AJ.-A. J. Med. Chem. 2008; 51: 4986
- 5a Hanefeld U. Rees CW. White AJ. P. Williams DJ. J. Chem. Soc., Perkin Trans. 1 1996; 1545
- 5b Yu G. Mason H. Wu X. Wang J. Chong S. Dorough G. Henwood A. Pongrac R. Seliger L. He B. Normandin D. Adam L. Krupinski J. Macor J. J. Med. Chem. 2001; 44: 1025
- 5c de Mello H. Echevarria A. Bernardino AM. Canto-Cavalheiro M. Leon LL. J. Med. Chem. 2004; 47: 5427
- 5d Tucker TJ. Sisko JT. Tynebor RM. Williams TM. Felock PJ. Flynn JA. Lai M.-T. Liang Y. McGaughey G. Liu M. Miller M. Moyer G. Munshi V. Perlow-Poehnelt R. Prasad S. Reid JC. Sanchez R. Torrent M. Vacca JP. Wan B.-L. Yan Y. J. Med. Chem. 2008; 51: 6503
- 5e Ochiai H. Ishida A. Ohtani T. Kusumi K. Kishikawa K. Yamamoto S. Takeda H. Obata T. Makai H. Toda M. Bioorg. Med. Chem. 2004; 12: 4089
- 5f Revesz L. Blum E. Di Padova FE. Buhl T. Feifel R. Gram H. Hiestand P. Manning U. Neumann U. Rucklin G. Bioorg. Med. Chem. Lett. 2006; 16: 262
- 6 Csuk R. Barthel A. Brezesinski T. Raschke C. Bioorg. Med. Chem. Lett. 2004; 14: 4983
- 7 Karolak-Wojciechowska J. Kwiatkowski W. Obniska J. Zejc A. Acta Crystallogr., Ser. C 1996; 52: 1808
- 8 Sondhi S. Bhattacharjee G. Jameel R. Shukla R. Raghubir R. Lozach O. Meijer L. Open Chem. 2004; 2: 1
- 9a Ketron AC. Denny WA. Graves DE. Osheroff N. Biochemistry 2012; 51: 1730
- 9b De Almeida SM. V. Lafayette EA. da Silva LP. B. G. Amorim CA. D. C. de Oliveira TB. Ruiz AL. T. G. de Carvalho JE. de Moura RO. Beltrão EI. C. do Carmo Alves de Lima M. de Carvalho LB. Jr. Int. J. Mol. Sci. 2015; 16: 13023
- 10 Dolphin GT. Chierici S. Ouberai M. Dumy P. Garcia J. ChemBioChem 2008; 9: 952
- 11 Lee Y. Hyun S. Kim HJ. Yu J. Angew. Chem. Int. Ed. 2007; 47: 134
- 12a Katritzky AR. Barczynski P. Musumarra G. Pisano D. Szafran M. J. Am. Chem. Soc. 1989; 111: 7
- 12b Shanmugasundaram P. Prabahar KJ. Ramakrishnan VT. J. Heterocycl. Chem. 1993; 30: 1003
- 12c Islam A. Murugan P. Hwang KC. Cheng CH. Synth. Met. 2003; 139: 347
- 13a Mohan H. Srividya N. Ramamurthy P. Mittal JP. J. Phys. Chem. 1997; 101: 2931
- 13b Srividya N. Ramamurthy P. Ramakrishnan VT. Spectrochim. Acta, Part A 1998; 54: 245
- 13c Mohan H. Mittal JP. Srividya N. Ramamurthy P. J. Phys. Chem. 1998; 102: 4444
- 14a Hudlicky M. Reductions in Organic Chemistry . American Chemical Society; Washington DC: 1996. 2nd ed. 96-100
- 14b Rylander PN. Hydrogenation Methods . Academic Press; New York: 1985
- 15a Sharma S. Kundu B. Tetrahedron Lett. 2008; 49: 7062
- 15b Shi D.-Q. Dou G.-L. Ni S.-N. Shi J.-W. Li X.-Y. Wang X.-S. Wu H. Ji S-J. Synlett 2007; 2509
- 15c Shi D.-Q. Dou G.-L. Zhou Y. Synthesis 2008; 2000
- 15d Sawant D. Kumar R. Maulik PR. Kundu B. Org. Lett. 2006; 8: 1525
- 16a Panja S. Kundu D. Ahammed S. Ranu EC. Tetrahedron Lett. 2017; 58: 3457
- 16b Cantillo D. Moghaddam MM. Kappe CO. J. Org. Chem. 2013; 78: 4530
- 16c Pagoti S. Surana S. Chauhan A. Parasara B. Dash J. Catal. Sci. Technol. 2013; 3: 584
- 16d Halli J. Schneider AE. Beisel T. Keamer P. Shemet A. Manolikakes G. Synthesis 2017; 49: 849
- 16e Galenko AV. Shakirova FM. Galenko EE. Novikov MS. Khlennikov AF. J. Org. Chem. 2007; 82: 5367
- 16f Kong W. Li B. Xu X. Song Q. J. Org. Chem. 2016; 81: 8436
- 17a Jiang J. Yu J. Sun X.-X. Rao Q.-Q. Gong L.-Z. Angew.Chem.Int. Ed. 2008; 47: 2458
- 17b Liu L. Sarkisian R. Deng Y. Wang H. J. Org.Chem. 2013; 78: 5751
- 17c Khalafi-Nezhad A. Sarikhani S. Shahidzadeh ES. Panahi F. Green Chem. 2012; 14: 2876
- 18 Li X. Mao Z. Wang Y. Chen W. Lin X. Tetrahedron 2011; 67: 3858
- 19 Khadem S. Udachin KA. Enright GD. Prakesch M. Arya P. Tetrahedron Lett. 2009; 50: 6661
- 20 Chung T.-W. Narhe BD. Lin C.-C. Sun C.-M. Org. Lett. 2015; 17: 5368
- 21 Nadaraj V. Selvi ST. Mohan S. Eur. J. Med. Chem. 2009; 44: 976
- 22 Zang H. Zhang Y. Mo Y. Cheng B. Synth. Commun. 2011; 41: 3207
- 23 Zhang W.-T. Chen D.-S. Li C. Wang X.-S. Synthesis 2015; 47: 562
- 24a Kidwai M. Rastogi S. Heteroat. Chem. 2005; 16: 138
- 24b Thirumurthy K. Thirunarayanan G. RSC Adv. 2015; 5: 33595
- 24c Tu S. Jia R. Jiang B. Zhang Y. Zhang J. J. Heterocycl. Chem. 2006; 43: 1621
- 24d Wan Y. Zhang X.-X. Wang C. Zhao L.-L. Chen L.-F. Liu G.-X. Huang S.-Y. Yue S.-N. Zhang W.-L. Wu H. Tetrahedron 2013; 69: 3947
For reviews, see: