Synlett 2017; 28(13): 1530-1543
DOI: 10.1055/s-0036-1589494
account
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Approaches to 3,4-Annulated Indoles Using Organocatalytic Domino Reactions

Lorenzo Caruana
,
Mariafrancesca Fochi*
Department of Industrial Chemistry “Toso Montanari” & INSTM RU Bologna, Alma Mater Studiorum - University of Bologna, V. Risorgimento 4, 40136 Bologna, Italy   Email: mariafrancesca.fochi@unibo.it   Email: luca.bernardi2@unibo.it
,
Department of Industrial Chemistry “Toso Montanari” & INSTM RU Bologna, Alma Mater Studiorum - University of Bologna, V. Risorgimento 4, 40136 Bologna, Italy   Email: mariafrancesca.fochi@unibo.it   Email: luca.bernardi2@unibo.it
› Author Affiliations
Further Information

Publication History

Received: 20 February 2017

Accepted after revision: 20 March 2017

Publication Date:
19 April 2017 (online)


Abstract

Organocatalytic domino reactions of 4-substituted indoles are summarized in this account. Two reactions have been developed, one with enals, activated by secondary amine catalysts via iminium ions, and one with nitroethene, using a phosphoric acid catalyst. Both reactions required solving the challenge posed by the very low nucleo­philicity of the indole substrates, which bear an electron-withdrawing Michael acceptor at C4. DFT calculations were used to shed light on the unique reaction pathway followed by the phosphoric acid catalyzed transformation, wherein a bicoordinated nitronic acid intermediate was found to evolve preferentially through an intramolecular nitro-Michael reaction, instead of the common tautomerization pathway. These reactions provide new and efficient entries to 3,4-ring-fused indoles in dia­stereo- and enantioenriched form. In more detail, the structures obtained feature a 1,3,4,5-tetrahydrobenzo[cd]indole core, which is present in the structural framework of ergot alkaloids. Indeed, the preparation of an intermediate previously used in ergot alkaloid (6,7-secoagroclavine) synthesis was possible from one of the catalytic adducts.

1 Introduction

2 Reactions of 4-Substituted Indoles with α,β-Unsaturated Aldehydes Catalyzed by Secondary Amines

3 Reactions of 4-Substituted Indoles with Nitroethene Catalyzed by Brønsted Acids

4 Conclusion

 
  • References

  • 1 Current address: F.I.S. – Fabbrica Italiana Sintetici, 36075 Montecchio Maggiore, Italy.
    • 2a Tietze LF. Chem. Rev. 1996; 96: 115
    • 2b Fogg DE. dos Santos DN. Coord. Chem. Rev. 2004; 248: 2365
    • 2c Pellissier H. Chem. Rev. 2013; 113: 442
    • 3a Grondal C. Jeanty M. Enders D. Nat. Chem. 2010; 2: 167
    • 3b Walji AM. MacMillan DW. C. Synlett 2007; 1477
    • 3c Volla CM. R. Atodiresei I. Rueping M. Chem. Rev. 2014; 114: 2390
    • 3d Pellissier H. Adv. Synth. Catal. 2012; 354: 237
    • 3e Moyano A. Rios R. Chem. Rev. 2011; 111: 4703

      For overviews, see:
    • 4a Bhanja C. Jena S. Nayak S. Mohapatra S. Beilstein J. Org. Chem. 2012; 8: 1668
    • 4b Nayak S. Panda P. Bhakta S. Mishra SK. Mohapatra S. RSC Adv. 2016; 6: 96154

    • For key reports, see:
    • 4c Wang W. Li H. Wang J. Zu L. J. Am. Chem. Soc. 2006; 128: 10354
    • 4d Rios R. Sundén H. Ibrahem I. Zhao G.-L. Eriksson L. Córdova A. Tetrahedron Lett. 2006; 47: 8679
    • 4e Govender T. Hojabri L. Moghaddam FM. Arvidsson PI. Tetrahedron: Asymmetry 2006; 17: 1763
    • 4f Zhang X. Zhang S. Wang W. Angew. Chem. Int. Ed. 2010; 49: 1481
    • 4g Aléman J. Alvarado C. Marcos V. Núñez A. García Ruano JL. Synthesis 2011; 1840
    • 4h Aléman J. Núñez A. Marzo L. Marcos V. Alvarado C. García Ruano JL. Chem. Eur. J. 2010; 16: 9453
    • 5a Enders D. Wang C. Bats JW. Synlett 2009; 1777
    • 5b Enders D. Hahn R. Atodiresei I. Adv. Synth. Catal. 2013; 355: 1126
    • 5c Raja A. Hong B.-C. Lee G.-H. Org. Lett. 2014; 16: 5756
    • 5d Duan J. Cheng Y. Cheng J. Li R. Li P. Chem. Eur. J. 2017; 23: 519

      For reviews, accounts, and general articles, see:
    • 6a Bernardi L. Fochi M. Fini F. Ricci A. Chimia 2007; 61: 224
    • 6b Bernardi L. Fochi M. Comes Franchini M. Ricci A. Org. Biomol. Chem. 2012; 10: 2911
    • 6c Fochi M. Caruana L. Bernardi L. Synthesis 2014; 46: 135
    • 6d Caruana L. Fochi M. Bernardi L. Molecules 2015; 20: 11733
    • 6e Bernardi L. Fochi M. In Sustainable Catalysis: Without Metals or Other Endangered Metals . North M. Royal Society of Chemistry; Cambridge: 2016. Part 2, Chap. 14, 1
    • 6f Bernardi L. Fochi M. Molecules 2016; 21: 1000

      For reviews, see:
    • 7a Bandini M. Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
    • 7b Bartoli G. Bencivenni G. Dalpozzo R. Chem. Soc. Rev. 2010; 39: 4449
    • 7c Dalpozzo R. Chem. Soc. Rev. 2015; 44: 742
    • 7d Lu H.-H. Tan F. Xiao W.-J. Curr. Org. Chem. 2011; 15: 4022
    • 7e Zeng M. You S.-L. Synlett 2010; 1289
    • 7f Terrasson V. Marcia de Figueiredo R. Campagne JM. Eur. J. Org. Chem. 2010; 2635
    • 7g Rueping M. Nachtsheim BJ. Beilstein J. Org. Chem. 2010; 6: 6
    • 8a Mari M. Bartoccini F. Piersanti G. J. Org. Chem. 2013; 78: 7727
    • 8b Bartolucci S. Bartoccini F. Righi M. Piersanti G. Org. Lett. 2012; 14: 600
    • 8c Bartoccini F. Casoli M. Mari M. Piersanti G. J. Org. Chem. 2014; 79: 3255
    • 8d Bartoccini F. Bartolucci S. Mari M. Piersanti G. Org. Biomol. Chem. 2016; 14: 10095

      For exceptions regarding 1,7-annulated indoles, which appeared after the completion of this work, see:
    • 10a Shi F. Zhang H.-H. Sun X.-X. Liang J. Fan T. Tu S.-J. Chem. Eur. J. 2015; 21: 3465
    • 10b Giardinetti M. Moreau X. Coeffard V. Greck C. Adv. Synth. Catal. 2015; 357: 3501
    • 11a Cheng D.-J. Wu H.-B. Tian S.-K. Org. Lett. 2011; 13: 5636
    • 11b Xu Q.-L. Dai L.-X. You S.-L. Chem. Sci. 2013; 4: 97

    • For a non-catalytic example, see:
    • 11c Schönherr H. Leighton JL. Org. Lett. 2012; 14: 2610
    • 12a Park I.-K. Park J. Cho C.-G. Angew. Chem. Int. Ed. 2012; 51: 2496
    • 12b Shan D. Gao Y. Jia Y. Angew. Chem. Int. Ed. 2013; 52: 4902
    • 12c Breazzano SP. Poudel YB. Boger DL. J. Am. Chem. Soc. 2013; 135: 1600
    • 12d Lanke V. Prabhu KR. Org. Lett. 2013; 15: 6262
    • 12e Miura T. Funakoshi Y. Murakami M. J. Am. Chem. Soc. 2014; 136: 2272
    • 13a Yonemitsu O. Cerutti P. Witkop B. J. Am. Chem. Soc. 1966; 88: 3941
    • 13b Gritsch PJ. Leitner C. Pfaffenbach M. Gaich T. Angew. Chem. Int. Ed. 2014; 53: 1208
    • 13c Uhle FC. J. Am. Chem. Soc. 1949; 71: 761
    • 13d Kornfeld EC. Fornefeld EJ. Kline GB. Mann MJ. Morrison DE. Jones RG. Woodward RB. J. Am. Chem. Soc. 1956; 78: 3087
    • 13e Padwa A. Bur SK. Zhang H. J. Org. Chem. 2005; 70: 6833
    • 13f Ruiz M. López-Alvarado P. Menéndez JC. Eur. J. Org. Chem. 2013; 2802

      For overviews on the properties and biosynthesis of ergot alkaloids, see:
    • 14a Schardl CL. Panaccione DG. Tudzynski P. In The Alkaloids . Vol. 63. Cordell GA. Academic Press; San Diego: 2006: 45
    • 14b Floss HG. Tetrahedron 1976; 32: 873
    • 14c Chirivì C. Fontana G. Monti D. Ottolina G. Riva S. Danieli B. Chem. Eur. J. 2012; 18: 10355
    • 14d Schwarzer DD. Gritsch PJ. Gaich T. Synlett 2013; 24: 1025
    • 14e Wallwey C. Li S.-M. Nat. Prod. Rep. 2011; 28: 496
    • 14f Hofmann A. LSD: My Problem Child . McGraw-Hill; New York: 1980
    • 15a Somei M. Yokoyama Y. Murakami Y. Ninomiya I. Kihuchi T. Naito T. In The Alkaloids . Vol. 54. Cordell GA. Academic Press; San Diego: 2000: 191
    • 15b Ohno H. Chiba H. Inuki S. Oishi S. Fujii N. Synlett 2014; 24: 179
    • 15c McCabe SR. Wipf P. Org. Biomol. Chem. 2016; 14: 5894
    • 15d Umezaki S. Yokoshima S. Fukuyama T. Org. Lett. 2013; 15: 4230
  • 16 Caruana L. Fochi M. Comes Franchini M. Ranieri S. Mazzanti A. Bernardi L. Chem. Commun. 2014; 50: 445
  • 17 Yamada F. Makita Y. Somei M. Heterocycles 2007; 72: 599
    • 18a Hayashi Y. Gotoh H. Hayashi T. Shoji M. Angew. Chem. Int. Ed. 2005; 44: 4212
    • 18b Marigo M. Wabnitz TC. Fielenbach D. Jørgensen KA. Angew. Chem. Int. Ed. 2005; 44: 794
    • 18c Donslund DS. Johansen TK. Poulsen PH. Halskov KH. Jørgensen KA. Angew. Chem. Int. Ed. 2015; 54: 13860
    • 18d Jensen KL. Dickmeiss G. Jiang H. Albrecht Ł. Jørgensen KA. Acc. Chem. Res. 2012; 45: 248
    • 19a Hong L. Wang L. Chen C. Zhang B. Wang R. Adv. Synth. Catal. 2009; 351: 772
    • 19b Wang Z.-J. Yang J.-G. Jin J. Lv X. Bao W. Synlett 2009; 3994
    • 19c Shi Z.-H. Sheng H. Yang K.-F. Jiang J.-X. Lai G.-Q. Lu Y. Xu L.-W. Riguet E. J. Org. Chem. 2011; 76: 8143
    • 19d Enders D. Wang C. Mukanova M. Greb A. Chem. Commun. 2010; 46: 2447
    • 20a Chi Y. Gellman SH. Org. Lett. 2005; 7: 4253
    • 20b Franzén J. Marigo M. Fielenbach D. Wabnitz TC. Kjærsgaard A. Jørgensen KA. J. Am. Chem. Soc. 2005; 127: 18296
  • 21 Bernardi L. Fochi M. Carbone R. Martinelli A. Fox ME. Cobley CJ. Kandagatla B. Oruganti S. Dahanukar VH. Carlone A. Chem. Eur. J. 2015; 21: 19208
  • 22 Wang C. Yang X. Raabe G. Enders D. Adv. Synth. Catal. 2012; 354: 2629
  • 23 Muchowski JM. J. Heterocycl. Chem. 2000; 37: 1293
  • 24 Mayr H. Lakhdar S. Maji B. Ofial AR. Beilstein J. Org. Chem. 2012; 8: 1458
  • 25 Austin JF. MacMillan DW. C. J. Am. Chem. Soc. 2002; 124: 1172
  • 26 Hechavarria Fonseca MT. List B. Angew. Chem. Int. Ed. 2004; 43: 3958
  • 27 Eder U. Sauer G. Wiechert R. Angew. Chem. Int. Ed. 1971; 10: 496
  • 28 Romanini S. Galletti E. Caruana L. Mazzanti A. Himo F. Santoro S. Fochi M. Bernardi L. Chem. Eur. J. 2015; 21: 17578
    • 29a Herrera RP. Sgarzani V. Bernardi L. Ricci A. Angew. Chem. Int. Ed. 2005; 44: 6576
    • 29b Itoh J. Fuchibe K. Akiyama T. Angew. Chem. Int. Ed. 2008; 47: 4016
  • 30 Ranganathan D. Rao CB. Ranganathan S. Mehrotra AK. Iyengar R. J. Org. Chem. 1980; 45: 1185
    • 31a Kruse LI. Meyer MD. J. Org. Chem. 1984; 49: 4761
    • 31b Oppolzer W. Francotte E. Bättig K. Helv. Chem. Acta 1981; 64: 478
  • 32 Hatanaka N. Ozaki O. Matsumoto M. Tetrahedron Lett. 1986; 27: 3169
    • 33a Zhang Z. Schreiner PR. Chem. Soc. Rev. 2009; 38: 1187
    • 33b Knowles RR. Jacobsen EN. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 20678
    • 33c Takemoto Y. Chem. Pharm. Bull. 2010; 58: 593
  • 34 Lancianesi S. Palmieri A. Petrini M. Chem. Rev. 2014; 114: 7108
  • 35 Aitken LS. Arezki NR. Dell’Isola A. Cobb AJ. A. Synthesis 2013; 45: 2627
    • 36a Kampen D. Reisinger CM. List B. In Topics in Current Chemistry: Asymmetric Organocatalysis . Vol. 291. List B. Springer-Verlag; Heidelberg: 2010: 395
    • 36b Akiyama T. Chem. Rev. 2007; 107: 5744
    • 36c Terada M. Synthesis 2010; 1929
    • 36d Yu J. Shi F. Gong L.-Z. Acc. Chem. Res. 2011; 44: 1156
    • 36e Zamfir A. Schenker S. Freund M. Tsogoeva SB. Org. Biomol. Chem. 2010; 8: 5262
    • 36f Parmar D. Sugiono E. Raja S. Rueping M. Chem. Rev. 2014; 114: 9047
  • 37 Hoffmann S. Seayad AM. List B. Angew. Chem. Int. Ed. 2005; 44: 7424
  • 38 Felker I. Pupo G. Kraft P. List B. Angew. Chem. Int. Ed. 2015; 54: 1960
    • 39a Wang X.-F. Chen J.-R. Cao Y.-J. Cheng H.-G. Xiao W.-J. Org. Lett. 2010; 12: 1140
    • 39b Loh CJ. J. Atodiresei I. Enders D. Chem. Eur. J. 2013; 19: 10822
    • 39c Anderson JC. Koovits PJ. Chem. Sci. 2013; 4: 2897
  • 40 Santoro S. Kalek M. Huang G. Himo F. Acc. Chem. Res. 2016; 49: 1006
  • 41 Marcelli T. Hammar P. Himo F. Chem. Eur. J. 2008; 14: 8562
  • 42 Plata RE. Singleton DA. J. Am. Chem. Soc. 2015; 137: 3811
    • 43a Hirata T. Yamanaka M. Chem. Asian J. 2011; 6: 510
    • 43b Zheng C. Sheng Y.-F. Li Y.-X. You S.-L. Tetrahedron 2010; 66: 2875

      For a subsequent study on the addition to imines, which includes the proton shift from nucleophile to electrophile, see:
    • 44a Liu C. Han P. Wu X. Tang M. Comput. Theor. Chem. 2014; 1050: 39

    • For other relevant work with metal catalysts, see:
    • 44b Méndez I. Rodríguez R. Polo V. Passarelli V. Lahoz FJ. García-Orduña P. Carmona D. Chem. Eur. J. 2016; 22: 11064
  • 45 Dai Q. Harman A. Zhao JC.-G. Chem. Eur. J. 2013; 19: 1666
  • 46 Monge D. Jiang H. Alvarez-Casao Y. Chem. Eur. J. 2015; 21: 4994