Synthesis 2018; 50(15): 2824-2852
DOI: 10.1055/s-0036-1589535
review
© Georg Thieme Verlag Stuttgart · New York

Acetonitrile as a Building Block and Reactant

B. H. Hoff*
Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway   Email: Bard.Helge.Hoff@chem.ntnu.no
› Author Affiliations
Further Information

Publication History

Received: 20 March 2018

Accepted after revision: 19 April 2018

Publication Date:
13 June 2018 (online)


Abstract

Acetonitrile is popular as a solvent for performing organic reactions, as a ligand in inorganic chemistry, as a mobile phase in chromatography, and as an electrolyte solvent in dye-sensitized solar cells. This is mainly due to its ability to dissolve both polar and nonpolar components. However, acetonitrile is also a valuable building block allowing atom-efficient transformations in synthetic organic chemistry. The aim of this review is to highlight synthetic transformations using acetonitrile, covering both classical approaches and modern strategies proceeding through radical intermediates or mediated by metal catalysis. Besides showcasing synthetic protocols useful for acetonitrile and analogues, warnings for when not to use acetonitrile as a solvent are also provided.

1 Introduction

2 Fundamental Reactions with Acetonitrile

3 Cyanomethylation of Non-Aromatics

4 The Acetonitrile Nitrogen as a Nucleophile

5 The Blaise Reaction

6 Synthesis of Pyridines

7 Other Cyclization Reactions

8 Cyanomethylation of Arenes and Heteroarenes

9 Acetylation of Arenes Using Acetonitrile

10 Synthesis of N-Arylacetamides

11 Cyanation Using Acetonitrile as a Cyanide Source

12 When To Avoid Acetonitrile as a Solvent

13 Conclusion

 
  • References

  • 1 Boschloo G. Hagfeldt A. Acc. Chem. Res. 2009; 42: 1819
  • 2 Henderson RK. Jimenez-Gonzalez C. Constable DJ. C. Alston SR. Inglis GG. A. Fisher G. Sherwood J. Binks SP. Curzons AD. Green Chem. 2011; 13: 854
  • 3 Bordwell FG. Acc. Chem. Res. 1988; 21: 456
  • 4 Fleming FF. Yao L. Ravikumar PC. Funk L. Shook BC. J. Med. Chem. 2010; 53: 7902
  • 5 Balicki R. Kaczmarek L. Synth. Commun. 1993; 23: 3149
  • 6 Lakouraj MM. Bahrami K. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1999; 38: 974
  • 7 Li Y. Chen H. Liu J. Wan X. Xu Q. Green Chem. 2016; 18: 4865
  • 8 Chen H. Dai W. Chen Y. Xu Q. Chen J. Yu L. Zhao Y. Ye M. Pan Y. Green Chem. 2014; 16: 2136
  • 9 Veisi H. Maleki B. Hamelian M. Ashrafi SS. RSC Adv. 2015; 5: 6365
  • 10 Basu MK. Luo F.-T. Tetrahedron Lett. 1998; 39: 3005
  • 11 Tomas-Mendivil E. Cadierno V. Menendez MI. Lopez R. Chem. Eur. J. 2015; 21: 16874
  • 12 Keshipour S. Shaabani A. Res. Chem. Intermed. 2015; 41: 5071
  • 13 Battilocchio C. Hawkins JM. Ley SV. Org. Lett. 2014; 16: 1060
  • 14 Shimizu K.-i. Kubo T. Satsuma A. Kamachi T. Yoshizawa K. ACS Catal. 2012; 2: 2467
  • 15 Buil ML. Cadierno V. Esteruelas MA. Gimeno J. Herrero J. Izquierdo S. Onate E. Organometallics 2012; 31: 6861
  • 16 Li Z. Wang L. Zhou X. Adv. Synth. Catal. 2012; 354: 584
  • 17 Li J. Tang G. Wang Y. Wang Y. Li Z. Li H. New J. Chem. 2016; 40: 358
  • 18 Tomas-Mendivil E. Francos J. Gonzalez-Fernandez R. Gonzalez-Liste PJ. Borge J. Cadierno V. Dalton Trans. 2016; 45: 13590
  • 19 Matsuoka A. Isogawa T. Morioka Y. Knappett BR. Wheatley AE. H. Saito S. Naka H. RSC Adv. 2015; 5: 12152
  • 20 Murahashi S. Sasao S. Saito E. Naota T. J. Org. Chem. 1992; 57: 2521
  • 21 Borau-Garcia J. Gutsulyak DV. Burford RJ. Piers WE. Dalton Trans. 2015; 44: 12082
  • 22 Crestani MG. Garcia JJ. J. Mol. Catal. A: Chem. 2009; 299: 26
  • 23 Parkins AW. Platinum Met. Rev. 1996; 40: 169
  • 24 Ghaffar T. Parkins AW. Tetrahedron Lett. 1995; 36: 8657
  • 25 Hirano T. Uehara K. Kamata K. Mizuno N. J. Am. Chem. Soc. 2012; 134: 6425
  • 26 Cariati E. Dragonetti C. Manassero L. Roberto D. Tessore F. Lucenti E. J. Mol. Catal. A: Chem. 2003; 204–205: 279
  • 27 Liu Y.-M. He L. Wang M.-M. Cao Y. He H.-Y. Fan K.-N. ChemSusChem 2012; 5: 1392
  • 28 Ghosh K. Iqubal MA. Molla RA. Mishra A. Kamaluddin, Islam SM. Catal. Sci. Technol. 2015; 5: 1606
  • 29 Ravindranathan M. Kalyanam N. Sivaram S. J. Org. Chem. 1982; 47: 4812
  • 30 Jana S. Praharaj S. Panigrahi S. Basu S. Pande S. Chang C.-H. Pal T. Org. Lett. 2007; 9: 2191
  • 31 Schaefer FC. Peters GA. J. Org. Chem. 1961; 26: 2778
  • 32 Caron S. Wei L. Douville J. Ghosh A. J. Org. Chem. 2010; 75: 945
  • 33 Reynolds GA. Humphlett WJ. Swamer FW. Hauser CR. J. Org. Chem. 1951; 16: 165
  • 34 Yoshihara H. Ikeda Y. Masaki S. JP H04290861, 1992
  • 35 Christe KO. Wilson WW. J. Fluorine Chem. 1990; 47: 117
  • 36 Christe KO. Wilson WW. Wilson RD. Bau R. Feng JA. J. Am. Chem. Soc. 1990; 112: 7619
  • 37 Zhang WM. Zhang L. Liao SJ. Xu Y. Yu DR. Chin. Chem. Lett. 1995; 6: 839
  • 38 Burns TP. Rieke RD. J. Org. Chem. 1987; 52: 3674
  • 39 Picci N. Pocci M. Gugliuzza A. Puoci F. De Munno A. Iemma F. Bertini V. Heterocycles 2001; 55: 2075
  • 40 Herrera A. Riano A. Moreno R. Caso B. Pardo ZD. Fernandez I. Saez E. Molero D. Sanchez-Vazquez A. Martinez-Alvarez R. J. Org. Chem. 2014; 79: 7012
  • 41 Ridge DN. Hanifin JW. Harten LA. Johnson BD. Menschik J. Nicolau G. Sloboda AE. Watts DE. J. Med. Chem. 1979; 22: 1385
  • 42 Forsberg JH. Spaziano VT. Balasubramanian TM. Liu GK. Kinsley SA. Duckworth CA. Poteruca JJ. Brown PS. Miller JL. J. Org. Chem. 1987; 52: 1017
  • 43 Xu F. Sun J.-H. Yan H.-B. Shen Q. Synth. Commun. 2000; 30: 1017
  • 44 Drauz K. Krimmer HP. EP 0304017, 1989
  • 45 Chen H. O’Connor S. Cane DE. Walsh CT. Chem. Biol. 2001; 8: 899
  • 46 Krimmer HP. Drauz K. Kleemann A. Chem.-Ztg. 1987; 111: 357
  • 47 Cobley CJ. Van den Heuvel M. Abbadi A. De Vries JG. Tetrahedron Lett. 2000; 41: 2467
  • 48 Davulcu S. Allen CL. Milne K. Williams JM. J. ChemCatChem 2013; 5: 435
  • 49 Lu Y. Kraatz H.-B. Inorg. Chem. Commun. 2004; 7: 382
  • 50 Schindler BK. Koslitz S. Meier S. Belov VN. Koch HM. Weiss T. Bruening T. Kaefferlein HU. Anal. Chem. 2012; 84: 3787
  • 51 Giannis A. Sandhoff K. Angew. Chem. 1989; 101: 220
  • 52 Ibrahim AD. Entsminger SW. Fout AR. ACS Catal. 2017; 7: 3730
  • 53 Krantz A. Laureni J. J. Labelled Compd. Radiopharm. 1978; 15: 697
  • 54 Shemyakin MM. Maimind VI. Tokarev BV. Karpov VI. Zh. Obshch. Khim. 1958; 28: 978
  • 55 Staskun B. Stephen H. J. Chem. Soc. 1956; 4696
  • 56 Braos-Garcia P. Garcia-Sancho C. Infantes-Molina A. Rodriguez-Castellon E. Jimenez-Lopez A. Appl. Catal., A 2010; 381: 132
  • 57 Islam SM. Tuhina K. Mubarak M. Mondal P. J. Mol. Catal. A: Chem. 2009; 297: 18
  • 58 Li H. Wu Y. Wan Y. Zhang J. Dai W. Qiao M. Catal. Today 2004; 93–95: 493
  • 59 Infantes-Molina A. Merida-Robles J. Braos-Garcia P. Rodriguez-Castellon E. Finocchio E. Busca G. Maireles-Torres P. Jimenez-Lopez A. J. Catal. 2004; 225: 479
  • 60 Schubart R. DE 4111906, 1992
  • 61 Stepanov FN. Shirokova NI. Zh. Obshch. Khim. 1955; 25: 905
  • 62 Morisaki K. Miura Y. Abe K. Hirota M. Nakada M. Chem. Lett. 1987; 1589
  • 63 Imai N. JP 2000247941, 2000
  • 64 McGhee L. Rycroft DS. Winfield JM. J. Fluorine Chem. 1987; 36: 351
  • 65 Bartlett N. Whalen JM. Chacon L. US 6160158, 2000
  • 66 Lui N. Heinrich J.-D. Wollner T. Pazenok S. US 20100312002, 2010
  • 67 Zhang J. Wu W. Ji X. Cao S. RSC Adv. 2015; 5: 20562
  • 68 Li L. Liu W. Zeng H. Mu X. Cosa G. Mi Z. Li C.-J. J. Am. Chem. Soc. 2015; 137: 8328
  • 69 Fujino A. Asano M. Yamaguchi H. Shirasaka N. Sakoda A. Ikunaka M. Obata R. Nishiyama S. Sugai T. Tetrahedron Lett. 2007; 48: 979
  • 70 Frank WC. Tetrahedron: Asymmetry 1998; 9: 3745
  • 71 Smith AB. III. Iwashima M. Tetrahedron Lett. 1994; 35: 6051
  • 72 Limnios D. Kokotos CG. J. Org. Chem. 2014; 79: 4270
  • 73 Adam W. Rao PB. Degen H.-G. Saha-Moller CR. Eur. J. Org. Chem. 2002; 630
  • 74 Golan E. Hagooly A. Rozen S. Tetrahedron Lett. 2004; 45: 3397
  • 75 Rozen S. Acc. Chem. Res. 2014; 47: 2378
  • 76 Heck M.-P. Wagner A. Mioskowski C. J. Org. Chem. 1996; 61: 6486
  • 77 Hada K. Suda A. Asoh K. Tsukuda T. Hasegawa M. Sato Y. Ogawa K. Kuramoto S. Aoki Y. Shimma N. Ishikawa T. Koyano H. Bioorg. Med. Chem. 2012; 20: 1442
  • 78 Zhang W. Haskins CW. Yang Y. Dai M. Org. Biomol. Chem. 2014; 12: 9109
  • 79 Crich D. Xu H. Kenig F. J. Org. Chem. 2006; 71: 5016
  • 80 Yamashita S. Iso K. Kitajima K. Himuro M. Hirama M. J. Org. Chem. 2011; 76: 2408
  • 81 Yu B. Huang Z. Zhang M. Dillard DR. Ji H. ACS Chem. Biol. 2013; 8: 524
  • 82 Arseniyadis S. Kyler KS. Watt DS. Org. React. 1984; 31: 1
  • 83 Berlan J. Delmas H. Duee I. Luche JL. Vuiglio L. Synth. Commun. 1994; 24: 1253
  • 84 Chercheja S. Klivar J. Jancarik A. Rybacek J. Salzl S. Tarabek J. Pospisil L. Vacek ChocholousovaJ. Vacek J. Pohl R. Cisarova I. Stary I. Stara IG. Chem. Eur. J. 2014; 20: 8477
  • 85 Taber DF. Kong S. J. Org. Chem. 1997; 62: 8575
  • 86 Corey EJ. Kuwajima I. Tetrahedron Lett. 1972; 13: 487
  • 87 Hesek D. Lee M. Noll BC. Fisher JF. Mobashery S. J. Org. Chem. 2009; 74: 2567
  • 88 Kumaraswamy G. Murthy AN. Sadaiah K. Tetrahedron 2012; 68: 3179
  • 89 MacLeod F. Lang S. Murphy JA. Synlett 2010; 529
  • 90 Schwartz BD. Banwell MG. Cade IA. Tetrahedron Lett. 2011; 52: 4526
  • 91 Eagon S. Ball-Jones N. Haddenham D. Saavedra J. DeLieto C. Buckman M. Singaram B. Tetrahedron Lett. 2010; 51: 6418
  • 92 Suzuki T. Matsumura R. Oku K. i. Taguchi K. Hagiwara H. Hoshi T. Ando M. Tetrahedron Lett. 2001; 42: 65
  • 93 Lawton GR. Ji H. Martasek P. Roman LJ. Silverman RB. Beilstein J. Org. Chem. 2009; 5: No. 28
  • 94 Tolstikov GA. Miftakhov MS. Komissarova NG. Adler ME. Zh. Org. Khim. 1989; 25: 208
  • 95 Matsuda I. Murata S. Ishii Y. J. Chem. Soc., Perkin Trans. 1 1979; 26
  • 96 Zarges W. Marsch M. Harms K. Boche G. Chem. Ber. 1989; 122: 1307
  • 97 Voronkov MG. Gostevskii BA. Shainyan BA. Rakhlin VI. Mirskov RG. Makarova OS. Dokl. Chem. 2005; 400: 17
  • 98 Emde H. Simchen G. Synthesis 1977; 636
  • 99 West R. Gornowicz GA. J. Am. Chem. Soc. 1971; 93: 1714
  • 100 Corriu RJ. P. Moreau JJ. E. Pataud-Sat M. Organometallics 1985; 4: 623
  • 101 Xiao S. Chen C. Li H. Lin K. Zhou W. Org. Process Res. Dev. 2015; 19: 373
  • 102 Koenig TM. Mitchell D. Tetrahedron Lett. 1994; 35: 1339
  • 103 Ko EY. Lim CH. Chung K.-H. Bull. Korean Chem. Soc. 2006; 27: 432
  • 104 Kisanga P. McLeod D. D’Sa B. Verkade J. J. Org. Chem. 1999; 64: 3090
  • 105 Yu Y. Li G. Jiang L. Zu L. Angew. Chem. Int. Ed. 2015; 54: 12627
  • 106 Suto Y. Kumagai N. Matsunaga S. Kanai M. Shibasaki M. Org. Lett. 2003; 5: 3147
  • 107 Goto A. Endo K. Ukai Y. Irle S. Saito S. Chem. Commun. 2008; 2212
  • 108 Goto A. Naka H. Noyori R. Saito S. Chem. Asian J. 2011; 6: 1740
  • 109 Kumagai N. Matsunaga S. Shibasaki M. J. Am. Chem. Soc. 2004; 126: 13632
  • 110 Kumagai N. Matsunaga S. Shibasaki M. Chem. Commun. 2005; 3600
  • 111 Kumagai N. Matsunaga S. Shibasaki M. Tetrahedron 2007; 63: 8598
  • 112 Wang G.-W. Zhou A.-X. Wang J.-J. Hu R.-B. Yang S.-D. Org. Lett. 2013; 15: 5270
  • 113 Chakraborty S. Patel YJ. Krause JA. Guan H. Angew. Chem. Int. Ed. 2013; 52: 7523
  • 114 DiBiase SA. Lipisko BA. Haag A. Wolak RA. Gokel GW. J. Org. Chem. 1979; 44: 4640
  • 115 Gokel GW. DiBiase SA. Lipisko BA. Tetrahedron Lett. 1976; 17: 3495
  • 116 Seo JW. Srisook E. Son HJ. Hwang O. Cha Y.-N. Chi DY. Bioorg. Med. Chem. Lett. 2005; 15: 3369
  • 117 D’Sa BA. Kisanga P. Verkade JG. J. Org. Chem. 1998; 63: 3961
  • 118 Lanari D. Alonzi M. Ferlin F. Santoro S. Vaccaro L. Org. Lett. 2016; 18: 2680
  • 119 Tomioka T. Takahashi Y. Vaughan TG. Yanase T. Org. Lett. 2010; 12: 2171
  • 120 Chandrasekhar S. Pendke M. Muththe C. Akondi SM. Mainkar PS. Tetrahedron Lett. 2012; 53: 1292
  • 121 Poisson T. Gembus V. Oudeyer S. Marsais F. Levacher V. J. Org. Chem. 2009; 74: 3516
  • 122 Shibata K. Saito Y. Urano K. Matsui M. Bull. Chem. Soc. Jpn. 1986; 59: 3323
  • 123 Xu J.-K. Li S.-J. Wang H.-Y. Xu W.-C. Tian S.-K. Chem. Commun. 2017; 53: 1708
  • 124 Vong BG. Abraham S. Xiang AX. Theodorakis EA. Org. Lett. 2003; 5: 1617
  • 125 Miyamoto Y. Banno Y. Yamashita T. Fujimoto T. Oi S. Moritoh Y. Asakawa T. Kataoka O. Yashiro H. Takeuchi K. Suzuki N. Ikedo K. Kosaka T. Tsubotani S. Tani A. Sasaki M. Funami M. Amano M. Yamamoto Y. Aertgeerts K. Yano J. Maezaki H. J. Med. Chem. 2011; 54: 831
  • 126 Nani RR. Reisman SE. J. Am. Chem. Soc. 2013; 135: 7304
  • 127 Yu W. Du Y. Zhao K. Org. Lett. 2009; 11: 2417
  • 128 Kadel LR. Kromer JR. Moore CE. Eichhorn DM. Polyhedron 2017; 125: 206
  • 129 Kim I. Song JH. Park CM. Jeong JW. Kim HR. Ha JR. No Z. Hyun Y.-L. Cho YS. Kang NS. Jeon DJ. Bioorg. Med. Chem. Lett. 2010; 20: 922
  • 130 Ebiike H. Taka N. Matsushita M. Ohmori M. Takami K. Hyohdoh I. Kohchi M. Hayase T. Nishii H. Morikami K. Nakanishi Y. Akiyama N. Shindoh H. Ishii N. Isobe T. Matsuoka H. J. Med. Chem. 2016; 59: 10586
  • 131 Boruah A. Baruah M. Prajapati D. Sandhu JS. Chem. Lett. 1996; 965
  • 132 Chen A. Bayly C. Bezencon O. Richard-Bildstein S. Dubé D. Dubé L. Gagné S. Gallant M. Gaudreault M. Grimm E. Houle R. Lacombe P. Laliberté S. Lévesque J.-F. Liu S. MacDonald D. Mackay B. Martin D. McKay D. Powell D. Remeň L. Soisson S. Toulmond S. Bioorg. Med. Chem. Lett. 2010; 20: 2204
  • 133 Nerush A. Vogt M. Gellrich U. Leitus G. Ben-David Y. Milstein D. J. Am. Chem. Soc. 2016; 138: 6985
  • 134 Watanabe R. Mizoguchi H. Oikawa H. Ohashi H. Watashi K. Oguri H. Bioorg. Med. Chem. 2017; 25: 2851
  • 135 Yamashita T. Yasuda M. Watanabe M. Kojima R. Tanabe K. Shima K. J. Org. Chem. 1996; 61: 6438
  • 136 Li Z. Xiao Y. Liu Z.-Q. Chem. Commun. 2015; 51: 9969
  • 137 Zhu N. Wang T. Ge L. Li Y. Zhang X. Bao H. Org. Lett. 2017; 19: 4718
  • 138 Chatalova-Sazepin C. Wang Q. Sammis GM. Zhu J. Angew. Chem. Int. Ed. 2015; 54: 5443
  • 139 Bunescu A. Wang Q. Zhu J. Org. Lett. 2015; 17: 1890
  • 140 Bunescu A. Wang Q. Zhu J. Angew. Chem. Int. Ed. 2015; 54: 3132
  • 141 Wu X. Riedel J. Dong VM. Angew. Chem. Int. Ed. 2017; 56: 11589
  • 142 Zhang H. Zhu C. Org. Chem. Front. 2017; 4: 1272
  • 143 Wang K. Chen X. Yuan M. Yao M. Zhu H. Xue Y. Luo Z. Zhang Y. J. Org. Chem. 2018; 83: 1525
  • 144 Yu Y. Zhuang S. Liu P. Sun P. J. Org. Chem. 2016; 81: 11489
  • 145 Gao X. Dong W. Hu B. Gao H. Yuan Y. Xie X. Zhang Z. RSC Adv. 2017; 7: 49299
  • 146 Zhang W. Yang S. Shen Z. Adv. Synth. Catal. 2016; 358: 2392
  • 147 Stephens D. Zhang Y. Cormier M. Chavez G. Arman H. Larionov OV. Chem. Commun. 2013; 49: 6558
  • 148 Guerinot A. Reymond S. Cossy J. Eur. J. Org. Chem. 2012; 19
  • 149 Castagnolo D. Armaroli S. Corelli F. Botta M. Tetrahedron: Asymmetry 2004; 15: 941
  • 150 Liu J. Ni C. Li Y. Zhang L. Wang G. Hu J. Tetrahedron Lett. 2006; 47: 6753
  • 151 Blacklock TJ. Sohar P. Butcher JW. Lamanec T. Grabowski EJ. J. J. Org. Chem. 1993; 58: 1672
  • 152 Toshimitsu A. Hirosawa C. Tamao K. Tetrahedron 1994; 50: 8997
  • 153 Toshimitsu A. Hirosawa C. Tanimoto S. Tetrahedron Lett. 1991; 32: 4317
  • 154 Singh RP. Shreeve JM. Acc. Chem. Res. 2004; 37: 31
  • 155 Dinoiu V. Kanno K. Fukuhara T. Yoneda N. Rev. Roum. Chim. 2005; 49: 981
  • 156 Kancharla PK. Reddy YS. Dharuman S. Vankar YD. J. Org. Chem. 2011; 76: 5832
  • 157 Chambers RD. Kenwright AM. Parsons M. Sandford G. Moilliet JS. J. Chem. Soc., Perkin Trans. 1 2002; 2190
  • 158 Michaudel Q. Thevenet D. Baran PS. J. Am. Chem. Soc. 2012; 134: 2547
  • 159 Liu C. Zhang Q. Li H. Guo S. Xiao B. Deng W. Liu L. He W. Chem. Eur. J. 2016; 22: 6208
  • 160 Umezawa J. Takahashi O. Furuhashi K. Nohira H. Tetrahedron: Asymmetry 1994; 5: 491
  • 161 Garcia Ruano JL. Garcia Paredes C. Tetrahedron Lett. 2000; 41: 5357
  • 162 Islas-Gonzalez G. Puigjaner C. Vidal-Ferran A. Moyano A. Riera A. Pericas MA. Tetrahedron Lett. 2004; 45: 6337
  • 163 Lin B. Wang Z. Guo B. WO 2013186248, 2013
  • 164 Rodrigues JA. R. Milagre HM. S. Milagre CD. F. Moran PJ. S. Tetrahedron: Asymmetry 2005; 16: 3099
  • 165 Voronkov MV. Gontcharov AV. Wang Z.-M. Richardson PF. Kolb HC. Tetrahedron 2004; 60: 9043
  • 166 Concellon JM. Suarez JR. Del Solar V. J. Org. Chem. 2005; 70: 7447
  • 167 Gandhi S. Bisai A. Prasad BA. B. Singh VK. J. Org. Chem. 2007; 72: 2133
  • 168 Ghorai MK. Ghosh K. Das K. Tetrahedron Lett. 2006; 47: 5399
  • 169 Prasad BA. B. Pandey G. Singh VK. Tetrahedron Lett. 2004; 45: 1137
  • 170 Li R. Jiang H. Liu W.-Y. Gu P.-M. Li X.-Q. Chin. Chem. Lett. 2014; 25: 583
  • 171 Li X. Yang X. Chang H. Li Y. Ni B. Wei W. Eur. J. Org. Chem. 2011; 3122
  • 172 Hsueh N. Clarkson GJ. Shipman M. Org. Lett. 2015; 17: 3632
  • 173 Mallick RK. Prabagar B. Sahoo AK. J. Org. Chem. 2017; 82: 10583
  • 174 Wang W.-S. Chen P. Tang Y. Tetrahedron 2017; 73: 2731
  • 175 Senadi GC. Gore BS. Hu W.-P. Wang J.-J. Org. Lett. 2016; 18: 2890
  • 176 Creemers AF. L. Lugtenburg J. J. Am. Chem. Soc. 2002; 124: 6324
  • 177 Zylber N. Zylber J. Rollin Y. Dunach E. Perichon J. J. Organomet. Chem. 1993; 444: 1
  • 178 Li L. Babaoglu E. Harms K. Hilt G. Eur. J. Org. Chem. 2017; 4543
  • 179 Chun YS. Lee KK. Ko YO. Shin H. Lee S.-g. Chem. Commun. 2008; 5098
  • 180 Ko YO. Chun YS. Park C.-L. Kim Y. Shin H. Ahn S. Hong J. Lee S.-g. Org. Biomol. Chem. 2009; 7: 1132
  • 181 Meng T. Liu L. Jia H. Ren L. Feng C. Wang X. Zhao W. Appl. Organomet. Chem. 2016; 30: 47
  • 182 Rao HS. P. Desai A. Synlett 2015; 26: 1059
  • 183 Diversi P. Ingrosso G. Lucherini A. Vanacore D. J. Mol. Catal. 1987; 41: 261
  • 184 Sugiyama Y.-k. Okamoto S. Synthesis 2011; 2247
  • 185 Kase K. Goswami A. Ohtaki K. Tanabe E. Saino N. Okamoto S. Org. Lett. 2007; 9: 931
  • 186 McIver A. Young DD. Deiters A. Chem. Commun. 2008; 4750
  • 187 Parnell CA. Vollhardt KP. C. Tetrahedron 1985; 41: 5791
  • 188 Stolley RM. Duong HA. Louie J. Organometallics 2013; 32: 4952
  • 189 Staudaher ND. Stolley RM. Louie J. Chem. Commun. 2014; 50: 15577
  • 190 Richard V. Ipouck M. Merel DS. Gaillard S. Whitby RJ. Witulski B. Renaud J.-L. Chem. Commun. 2014; 50: 593
  • 191 Cioni P. Diversi P. Ingrosso G. Lucherini A. Ronca P. J. Mol. Catal. 1987; 40: 337
  • 192 Onodera G. Shimizu Y. Kimura J.-n. Kobayashi J. Ebihara Y. Kondo K. Sakata K. Takeuchi R. J. Am. Chem. Soc. 2012; 134: 10515
  • 193 Fischer F. Jungk P. Weding N. Spannenberg A. Ott H. Hapke M. Eur. J. Org. Chem. 2012; 5828
  • 194 Wang K. Meng L.-G. Wang L. Org. Lett. 2017; 19: 1958
  • 195 Wang Y. Song L.-J. Zhang X. Sun J. Angew. Chem. Int. Ed. 2016; 55: 9704
  • 196 Zhang J. Zhang Q. Xia B. Wu J. Wang X.-N. Chang J. Org. Lett. 2016; 18: 3390
  • 197 Sarkar D. Rout N. Ghosh MK. Giri S. Neue K. Reuter H. J. Org. Chem. 2017; 82: 9012
  • 198 Fathimath Salfeena CT. Ashitha KT. Sasidhar BS. Org. Biomol. Chem. 2016; 14: 10165
  • 199 Barluenga J. Fernandez-Rodriguez MA. Garcia-Garcia P. Aguilar E. J. Am. Chem. Soc. 2008; 130: 2764
  • 200 Le ST. Fujimoto T. Asahara H. Nishiwaki N. Org. Biomol. Chem. 2016; 14: 10674
  • 201 Hamrouni K. Batanero B. Barba F. Saied T. Lamine Benkhoud M. Tetrahedron Lett. 2016; 57: 4673
  • 202 Garcia Martinez A. Herrera Fernandez A. Molero Vilchez D. Hanack M. Subramanian LR. Synthesis 1992; 1053
  • 203 Bruton G. Cooper IR. Orlek BS. WO 2006040192, 2006
  • 204 Davoren JE. Garnsey M. Pettersen B. Brodney MA. Edgerton JR. Fortin J.-P. Grimwood S. Harris AR. Jenkinson S. Kenakin T. Lazzaro JT. Lee C.-W. Lotarski SM. Nottebaum L. O’Neil SV. Popiolek M. Ramsey S. Steyn SJ. Thorn CA. Zhang L. Webb D. J. Med. Chem. 2017; 60: 6649
  • 205 Singh RK. Bhatt A. Kant R. Chauhan PK. Chem. Biol. Interface 2016; 6: 263
  • 206 Sudhakar K. Purna Chandra Rao B. Prem Kumar B. Suresh M. Ravi S. Asian J. Chem. 2017; 29: 864
  • 207 Rama V. Kanagaraj K. Pitchumani K. J. Org. Chem. 2011; 76: 9090
  • 208 Movaheditabar P. Javaherian M. Nobakht V. React. Kinet., Mech. Catal. 2017; 122: 217
  • 209 Demko ZP. Sharpless KB. J. Org. Chem. 2001; 66: 7945
  • 210 Abrishami F. Ebrahimikia M. Rafiee F. Appl. Organomet. Chem. 2015; 29: 730
  • 211 Behloul C. Bouchelouche K. Guijarro D. Najera C. Yus M. Synthesis 2014; 46: 2065
  • 212 Hassner A. Levy LA. Gault R. Tetrahedron Lett. 1966; 7: 3119
  • 213 Hajra S. Sinha D. Bhowmick M. J. Org. Chem. 2007; 72: 1852
  • 214 Agarwal R. Rauf A. Ahmad M. Osman SM. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1989; 28: 175
  • 215 Rauf A. Parveen H. J. Oleo Sci. 2004; 53: 279
  • 216 Itoh K.-i. Sakamaki H. Horiuchi CA. Synthesis 2005; 1935
  • 217 Li X. Huang L. Chen H. Wu W. Huang H. Jiang H. Chem. Sci. 2012; 3: 3463
  • 218 Ming L. Tang J. Zhao X. Synthesis 2014; 46: 2499
  • 219 Yagyu T. Takemoto Y. Yoshimura A. Zhdankin VV. Saito A. Org. Lett. 2017; 19: 2506
  • 220 Saito A. Taniguchi A. Kambara Y. Hanzawa Y. Org. Lett. 2013; 15: 2672
  • 221 Mu Q.-C. Lv J.-Y. Chen M.-Y. Bai X.-F. Chen J. Xia C.-G. Xu L.-W. RSC Adv. 2017; 7: 37208
  • 222 Klapars A. Waldman JH. Campos KR. Jensen MS. McLaughlin M. Chung JY. L. Cvetovich RJ. Chen C.-y. J. Org. Chem. 2005; 70: 10186
  • 223 Fier PS. Hartwig JF. Science (Washington, D. C.) 2013; 342: 956
  • 224 Chekmarev DS. Shorshnev SV. Stepanov AE. Kasatkin AN. Tetrahedron 2006; 62: 9919
  • 225 Nishigaya Y. Umei K. Yamamoto E. Kohno Y. Seto S. Tetrahedron Lett. 2014; 55: 5963
  • 226 Roberts C. Zhang Y. Beaumier F. Lepissier L. Marineau JJ. Rahl PB. Sprott K. Ciblat S. Sow B. Larouche-Gauther R. Berstler L. WO 2016196910, 2016
  • 227 Carre MC. Ezzinadi AS. Zouaoui MA. Geoffroy P. Caubere P. Synth. Commun. 1989; 19: 3323
  • 228 Xin HY. Biehl ER. J. Org. Chem. 1983; 48: 4397
  • 229 Biehl ER. Razzuk A. Jovanovic MV. Khanapure SP. J. Org. Chem. 1986; 51: 5157
  • 230 Kamila S. Koh B. Biehl ER. Synth. Commun. 2006; 36: 3493
  • 231 Wu G. Yin H. Chin. J. Chem. 1990; 435
  • 232 Yoshida H. Fujimura Y. Yuzawa H. Kumagai J. Yoshida T. Chem. Commun. 2013; 49: 3793
  • 233 Wada E. Takeuchi T. Fujimura Y. Tyagi A. Kato T. Yoshida H. Catal. Sci. Technol. 2017; 7: 2457
  • 234 Della CaN. Fontana M. Motti E. Catellani M. Acc. Chem. Res. 2016; 49: 1389
  • 235 Lei C. Cao J. Zhou J. Org. Lett. 2016; 18: 6120
  • 236 Shang L. Chang Y. Luo F. He J.-N. Huang X. Zhang L. Kong L. Li K. Peng B. J. Am. Chem. Soc. 2017; 139: 4211
  • 237 Levine R. Sheppard CS. J. Org. Chem. 1974; 39: 3556
  • 238 Windeck AK. Hess U. Steckhan E. Reck G. Liebigs Ann. Chem. 1996; 1471
  • 239 Jeganmohan M. Cheng C.-H. Chem. Commun. 2006; 2454
  • 240 Su H. Wang L. Rao H. Xu H. Org. Lett. 2017; 19: 2226
  • 241 Chang Q. Liu Z. Liu P. Yu L. Sun P. J. Org. Chem. 2017; 82: 5391
  • 242 Deng Z. Peng X. Huang P. Jiang L. Ye D. Liu L. Org. Biomol. Chem. 2017; 15: 442
  • 243 Wang Z. In Comprehensive Organic Name Reactions and Reagents. John Wiley; Chichester: 2010
  • 244 Booth BL. Noori GF. M. J. Chem. Soc., Perkin Trans. 1 1980; 2894
  • 245 Zhang C. Li F. Yu Y. Huang A. He P. Lei M. Wang J. Huang L. Liu Z. Liu J. Wei Y. J. Med. Chem. 2017; 60: 3618
  • 246 Dohi T. Takenaga N. Nakae T. Toyoda Y. Yamasaki M. Shiro M. Fujioka H. Maruyama A. Kita Y. J. Am. Chem. Soc. 2013; 135: 4558
  • 247 Scott DA. Dakin LA. Del Valle DJ. Diebold RB. Drew L. Gero TW. Ogoe CA. Omer CA. Repik G. Thakur K. Ye Q. Zheng X. Bioorg. Med. Chem. Lett. 2011; 21: 1382
  • 248 Zhou T. Shi Q. Chen C.-H. Zhu H. Huang L. Ho P. Lee K.-H. Bioorg. Med. Chem. 2010; 18: 6678
  • 249 Raboisson P. Lin T.-I. de Kock H. Vendeville S. Van de Vreken W. McGowan D. Tahri A. Hu L. Lenz O. Delouvroy F. Surleraux D. Wigerinck P. Nilsson M. Rosenquist A. Samuelsson B. Simmen K. Bioorg. Med. Chem. Lett. 2008; 18: 5095
  • 250 Frutos RP. Haddad N. Houpis IN. Johnson M. Smith-Keenan LL. Fuchs V. Yee NK. Farina V. Faucher A.-M. Brochu C. Hache B. Duceppe J.-S. Beaulieu P. Synthesis 2006; 2563
  • 251 Minabe M. Cho BP. Harvey RG. J. Am. Chem. Soc. 1989; 111: 3809
  • 252 Hsieh J.-C. Chen Y.-C. Cheng A.-Y. Tseng H.-C. Org. Lett. 2012; 14: 1282
  • 253 Zhou C. Larock RC. J. Am. Chem. Soc. 2004; 126: 2302
  • 254 Zhou C. Larock RC. J. Org. Chem. 2006; 71: 3551
  • 255 Pan S. Jiang H. Zhang Y. Zhang Y. Chen D. Beilstein J. Org. Chem. 2016; 12: 1302
  • 256 Wang X. Wang X. Liu M. Ding J. Chen J. Wu H. Synthesis 2013; 45: 2241
  • 257 Wang X. Liu M. Xu L. Wang Q. Chen J. Ding J. Wu H. J. Org. Chem. 2013; 78: 5273
  • 258 Skillinghaug B. Skoeld C. Rydfjord J. Svensson F. Behrends M. Saevmarker J. Sjoeberg PJ. R. Larhed M. J. Org. Chem. 2014; 79: 12018
  • 259 Skillinghaug B. Rydfjord J. Saevmarker J. Larhed M. Org. Process Res. Dev. 2016; 20: 2005
  • 260 Zhou B. Hu Y. Wang C. Angew. Chem. Int. Ed. 2015; 54: 13659
  • 261 Buchwald SL. Watson BT. Lum RT. Nugent WA. J. Am. Chem. Soc. 1987; 109: 7137
  • 262 Barr KJ. Watson BT. Buchwald SL. Tetrahedron Lett. 1991; 32: 5465
  • 263 Hirt UH. Schuster MF. H. French AN. Wiest OG. Wirth T. Eur. J. Org. Chem. 2001; 1569
  • 264 Xiang S.-K. Zhang D.-X. Hu H. Shi J.-L. Liao L.-G. Feng C. Wang B.-Q. Zhao K.-Q. Hu P. Yang H. Yu W.-H. Adv. Synth. Catal. 2013; 355: 1495
  • 265 Xiang S.-K. Li J.-M. Huang H. Feng C. Ni H.-L. Chen X.-Z. Wang B.-Q. Zhao K.-Q. Hu P. Redshaw C. Adv. Synth. Catal. 2015; 357: 3435
  • 266 Prakash GK. S. Moran MD. Mathew T. Olah GA. J. Fluorine Chem. 2009; 130: 806
  • 267 Lothian AP. Ramsden CA. Shaw MM. Smith RG. Tetrahedron 2011; 67: 2788
  • 268 Qiao Y. Li G. Liu S. Yangkai Y. Tu J. Xu F. Synthesis 2017; 49: 1834
  • 269 Lazzaroni S. Dondi D. Fagnoni M. Albini A. J. Org. Chem. 2010; 75: 315
  • 270 Protti S. Dichiarante V. Dondi D. Fagnoni M. Albini A. Chem. Sci. 2012; 3: 1330
  • 271 Abitelli E. Protti S. Fagnoni M. Albini A. J. Org. Chem. 2012; 77: 3501
  • 272 Sharma LK. Kumar S. Yadav P. Singh RK. P. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2008; 47: 1277
  • 273 Ghorai S. Lee D. Tetrahedron 2017; 73: 4062
  • 274 Kim J. Kim HJ. Chang S. Angew. Chem. Int. Ed. 2012; 51: 11948
  • 275 Wen Q. Lu P. Wang Y. RSC Adv. 2014; 4: 47806
  • 276 Zavitsas AA. J. Phys. Chem. A 2003; 107: 897
  • 277 Marlin DS. Olmstead MM. Mascharak PK. Angew. Chem. Int. Ed. 2001; 40: 4752
  • 278 Yi W. Yan X. Li R. Wang J.-Q. Zou S. Xiao L. Kobayashi H. Fan J. RSC Adv. 2016; 6: 16448
  • 279 Li R. Kobayashi H. Tong J. Yan X. Tang Y. Zou S. Jin J. Yi W. Fan J. J. Am. Chem. Soc. 2012; 134: 18286
  • 280 Kou X. Zhao M. Qiao X. Zhu Y. Tong X. Shen Z. Chem. Eur. J. 2013; 19: 16880
  • 281 Zhao M. Zhang W. Shen Z. J. Org. Chem. 2015; 80: 8868
  • 282 Zhu Y. Zhao M. Lu W. Li L. Shen Z. Org. Lett. 2015; 17: 2602
  • 283 Zhu Y. Li L. Shen Z. Chem. Eur. J. 2015; 21: 13246
  • 284 Xu W. Xu Q. Li J. Org. Chem. Front. 2015; 2: 231
  • 285 Hu W. Teng F. Peng H. Yu J. Sun S. Cheng J. Shao Y. Tetrahedron Lett. 2015; 56: 7056