Synlett 2017; 28(20): 2941-2945
DOI: 10.1055/s-0036-1590875
letter
© Georg Thieme Verlag Stuttgart · New York

Oxidative Biaryl Coupling of N-Aryl Anilines by Using a Hypervalent Iodine(III) Reagent

Koji Morimoto
a   Ritsumeikan University College of Pharmaceutical Sciences 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
b   Ritsumeikan University, Research Organization of Science and Technology, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan   eMail: kita@ph.ritsumei.ac.jp
,
Doichi Koseki
a   Ritsumeikan University College of Pharmaceutical Sciences 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
,
Toshifumi Dohi
a   Ritsumeikan University College of Pharmaceutical Sciences 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
,
Yasuyuki Kita*
b   Ritsumeikan University, Research Organization of Science and Technology, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan   eMail: kita@ph.ritsumei.ac.jp
› Institutsangaben
This work was partially supported by Grants-in-Aid for Scientific Research (A) from the Japan Society for the Promotion of Science (JSPS), a Grant-in-Aid for Scientific Research on Innovative Areas ‘Advanced Molecular Transformation by Organocatalysts’ from The Ministry of Education, Culture, Sports, Science and Technology (MEXT), and the Ritsumeikan Global Innovation Research Organization (R-GIRO) project. T.D. acknowledges a Grant-in-Aid for Scientific Research (C) from JSPS and the Asahi Glass Foundation. K.M. also acknowledges support from a Grant-in-Aid for Scientific Research (C) from the JSPS
Weitere Informationen

Publikationsverlauf

Received: 16. Juni 2017

Accepted after revision: 20. Juli 2017

Publikationsdatum:
26. Oktober 2017 (online)


Dedicated to Victor Snieckus in honor of his 80th birthday

Abstract

Biaryl diamines are important building blocks in organic ­synthesis. Consequently, it is desirable to develop a general and mild synthetic approach to diverse biaryl diamines. Oxidative coupling is an efficient and promising strategy for the synthesis of these targets. We have now developed a direct formation of biaryl diamines by oxidative coupling using a hypervalent iodine(III) reagent.

 
  • References and Notes

    • 1a Ohkuma T. Kitamura M. Noyori R. In Catalytic Asymmetric Synthesis . 2nd ed., Ojima I. Wiley-VCH; Weinheim: 2000
    • 1b Berkessel A. Gröger H. Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis. Wiley-VCH; Weinheim: 2005
  • 6 Jiang Y. Xi C. Yang X. Synlett 2005; 1381
  • 10 Matsumoto K. Dougomori K. Tachikawa S. Ishii T. Shindo M. Org. Lett. 2014; 16: 4754
  • 12 Ito M. Kubo H. Itani I. Morimoto K. Dohi T. Kita Y. J. Am. Chem. Soc. 2013; 135: 14078
    • 15a Kita Y. Egi M. Ohtsubo M. Saiki T. Takada T. Tohma H. Chem. Commun. 1996; 2225
    • 15b Kita Y. Gyoten M. Ohtsubo M. Tohma H. Takada T. Chem. Commun. 1996; 1481
    • 15c Takada T. Arisawa M. Gyoten M. Hamada R. Tohma H. Kita Y. J. Org. Chem. 1998; 63: 7698
    • 15d Arisawa M. Utsumi S. Nakajima M. Ramesh NG. Tohma H. Kita Y. Chem. Commun. 1999; 469
    • 15e Tohma H. Morioka H. Takizawa S. Arisawa M. Kita Y. Tetrahedron 2001; 57: 345
    • 15f Tohma H. Iwata M. Maegawa T. Kita Y. Tetrahedron Lett. 2002; 43: 9241
    • 15g Dohi T. Ito M. Morimoto K. Iwata M. Kita Y. Angew. Chem. Int. Ed. 2008; 47: 1301
    • 16a Dohi T. Maruyama A. Minamitsuji Y. Takenaga N. Kita Y. Chem. Commun. 2007; 1224
    • 16b Dohi T. Mochizuki E. Yamashita D. Miyazaki K. Kita Y. Heterocycles 2014; 88: 245

      For our hypervalent-iodine-catalyzed oxidation reactions, see:
    • 18a Dohi T. Maruyama A. Yoshimura M. Morimoto K. Tohma H. Kita Y. Angew. Chem. Int. Ed. 2005; 44: 6193
    • 18b Dohi T. Kita Y. Chem. Commun. 2009; 2073
    • 18c Dohi T. Takenaga N. Fukushima K. Uchiyama T. Kato D. Motoo S. Fujioka H. Kita Y. Chem. Commun. 2010; 7697
    • 18d Dohi T. Takenaga T. Nakae T. Toyoda Y. Yamasaki M. Shiro M. Fujioka H. Maruyama A. Kita Y. J. Am. Chem. Soc. 2013; 135: 4558
  • 19 Matsuzawa H. Tanabe Y. Miyake Y. Nishibayashi Y. Organometallics 2008; 27: 4021
  • 20 Oxidative Coupling of N-Arylnaphthalenamines 1; General Procedure PIFA (0.75 equiv.) was added to a stirred solution of the appropriate naphthalenamine 1 (0.30 mmol, 1 equiv) in DCE (3 mL) at r.t., and the mixture was stirred for 30 min. When the reaction was complete, sat. aq NaHCO3 was added to the mixture, and the aqueous phase was extracted with CH2Cl2. The extracts were dried (Na2SO4) and evaporated to dryness, and the crude residue was purified by column chromatography (silica gel, hexane–EtOAc). N,N′-Diphenyl-(1,1′-binaphthyl)-4,4′-diamine (2a) 8c 1H NMR (400 MHz, CDCl3): δ = 6.04 (s, 2 H), 6.95 (t, J = 7.6 Hz, 2 H), 7.11 (dd, J = 1.2, 8.8 Hz, 4 H), 7.29–7.35 (m, 6 H), 7.41 (d, J = 7.6 Hz, 2 H), 7.46–7.51 (m, 6 H), 8.14 (d, J = 8.4 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 115.1, 117.6, 120.6, 121.8, 125.5, 126.1, 127.4, 127.5, 128.3, 129.4, 133.3, 134.1, 138.5, 144.6. N,N′-bis(4-Tolyl)-1,1′-binaphthalene-4,4′-diamine (2b) 8c 1H NMR (400 MHz, CDCl3): δ = 2.33 (s, 6 H), 6.00 (s, 2 H), 7.05 (d, J = 8.4 Hz, 4 H), 7.13 (d, J = 8.4 Hz, 4 H), 7.30 (t, J = 7.6 Hz, 2 H), 7.36–7.37 (m, 4 H), 7.44–7.50 (m, 4 H), 8.11 (d, J = 8.8 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 20.7, 113.4, 118.7, 121.5, 125.4, 126.0, 126.9, 127.4, 128.3, 129.9, 130.6, 132.5, 134.1, 139.3, 141.6. N,N′-Bis(4-bromophenyl)-N,N′-diphenyl-1,1′-binaphthalene-4,4′-diamine (2e) IR (KBr): 3064, 3037, 1582, 1485, 1272, 910, 736 cm–1. 1H NMR (CDCl3): δ = 6.97 (d, J = 8.8 Hz, 4 H), 7.02 (t, J = 7.2 Hz, 2 H), 7.15 (d, J = 7.6 Hz, 4 H), 7.26–7.34 (m, 10 H), 7.38 (t, J = 6.8 Hz, 2 H), 7.42 (d, J = 7.6 Hz, 2 H), 7.49 (d, J = 8.0 Hz, 2 H), 7.51 (d, J = 7.6 Hz, 2 H), 8.02 (d, J = 8.0 Hz, 2 H). 13C NMR (CDCl3): δ = 113.8, 122.50, 122.53, 123.0, 124.3, 126.4, 126.5, 126.6, 127.2, 128.5, 129.3, 131.0, 132.1, 134.5, 136.8, 142.9, 147.7, 147.9. MS (MALDI-TOF): m/z = 744.12 [M+]. N,N,N′,N′-Tetraphenyl-1,1′-binaphthalene-2,2′-diamine (2g) 19 1H NMR (CDCl3): δ = 6.44 (d, J = 8.1 Hz, 2 H), 6.45–6.58 (m, 12 H), 6.61–6.77 (m, 10 H), 7.12 (td, J = 1.2, 7.6 Hz, 2 H), 7.62 (m, 4 H), 7.78 (d, J = 8.6 Hz, 2 H). 13C NMR (CDCl3): δ = 121.7, 123.2, 124.4, 125.2, 126.6, 126.7, 127.1, 128.3, 128.7, 131.2, 131.7, 134.0, 144.4, 147.2. Catalytic Oxidative Coupling of N-Phenylnaphthalen-1-amine (1a) PhI (10 mol%) and TFA (0.2 equiv) were added to a stirred solution of amine 1a (1 equiv) in 1:1 DCE/HFIP (0.67 M) at r.t. mCPBA (0.75 equiv) was then gradually added, and the mixture was stirred for 3 h under at r.t. When the reaction was complete (TLC), sat. aq NaHCO3 was added to the mixture, and the aqueous phase was extracted with CH2Cl2. The extracts were dried (Na2SO4) and then evaporated to dryness. The crude residue was purified by column chromatography (silica gel, hexane/EtOAc) to give pure 2a; yield: 71%.