Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(20): 2971-2975
DOI: 10.1055/s-0036-1590930
DOI: 10.1055/s-0036-1590930
letter
Enantioselective and Diastereoselective Conjugate Radical Additions to α-Arylidene Ketones and Lactones
This research was partially supported by funds from NIH RO1-54656.Further Information
Publication History
Received: 14 August 2017
Accepted after revision: 12 September 2017
Publication Date:
20 October 2017 (online)
Dedicated to Prof. Victor Snieckus on his 80th birthday
Abstract
A highly stereoselective conjugate radical addition to arylidene ketones and lactones has been developed. The conjugate radical additions using chiral salen Lewis acids proceeds with up to 99:1 dr and 87% ee in good to excellent chemical yields.
Key words
enantioselective radical reaction - arylidene ketones and lactones - diastereoselectivity - conjugate addition - chiral salen Lewis acidSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1590930.
- Supporting Information
-
References and Notes
- 1 Beijing Pharmin Technology Company Limited, Room 202, Unit 2, Huilongsen Park, No 99, Kechuang 14th Street, Beijing Economic-Technological Development Area, Beijing, 101111, P. R. of China.
- 2a Asymmetric Synthesis II: The Essentials. 2nd ed.; Christmann M. Bräse S. Wiley-VCH; Weinheim: 2007
- 2b Asymmetric Synthesis II. 2nd ed; Christmann M. Bräse S. Wiley-VCH; Weinheim: 2012
- 2c Fundamentals of Asymmetric Catalysis. Walsh PJ. Kozlowski MC. University Science Books; Sausalito, CA: 2009
- 3a Renaud P. Sibi MP. Radicals in Organic Synthesis . Vol. 1 and 2. Wiley-VCH; Weinheim: 2001
- 3b Stereochemistry of Radical Reactions . Curran DP. Porter NA. Giese B. VCH; Weinheim: 1995
- 3c Encyclopedia of Radicals in Chemistry, Biology and Materials . Chatgilialoglu C. Studer A. Wiley-VCH; Weinheim: 2012
- 4a Srikanth GS. C. Castle SL. Tetrahedron 2005; 61: 10377
- 4b Zimmerman J. Sibi MP. Top. Curr. Chem. 2006; 263: 107
- 4c Sibi MP. Manyem S. Tetrahedron 2000; 56: 8033
- 4d Sibi MP. Porter NA. Acc. Chem. Res. 1999; 32: 163
- 4e Sibi MP. Manyem S. Zimmerman J. Chem. Rev. 2003; 103: 3263
- 5a Sibi MP. Ji JG. Wu JH. Gürtler S. Porter NA. J. Am. Chem. Soc. 1996; 118: 9200
- 5b Sibi MP. Ji JG. J. Org. Chem. 1997; 62: 3800
- 5c Sibi MP. Zimmerman J. J. Am. Chem. Soc. 2006; 128: 13346
- 5d Ruiz Espelt L. McPherson IS. Wiensch EM. Yoon TP. J. Am. Chem. Soc. 2015; 137: 2452
- 5e Zhang L. Meggers E. Acc. Chem. Res. 2017; 50: 320
- 5f Sibi MP. Nie X. Shackleford JP. Stanley LM. Bouret F. Synlett 2008; 2655
- 6a Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis. Berkessel A. Gröger H. Wiley-VCH; Weinheim: 2005
- 6b Enantioselective Organocatalysis: Reactions and Experimental Procedures. Dalko PI. Wiley-VCH; Weinheim: 2007
- 6c Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 6d Matsui JK. Lang SB. Heitz DR. Molander GA. ACS Catal. 2017; 7: 2563
- 7 Shaw MH. Twilton J. MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
- 8a Hepburn HB. Melchiorre P. Chem. Commun. 2016; 52: 3520
- 8b Uraguchi D. Kinoshita N. Kizu T. Ooi T. J. Am. Chem. Soc. 2015; 137: 13768
- 8c Guo H. Herdweck E. Bach T. Angew. Chem. Int. Ed. 2010; 49: 7782
- 8d Vallavoju N. Selvakumar S. Jockusch S. Sibi MP. Sivaguru J. Angew. Chem. Int. Ed. 2014; 53: 5604
- 8e Rono LJ. Yayla HG. Wang DY. Armstrong MF. Knowles RR. J. Am. Chem. Soc. 2013; 135: 17735
- 8f Nishida M. Hayashi H. Nishida A. Kawahara N. Chem. Commun. 1996; 579
- 8g Du J. Skubi KL. Schultz DM. Yoon TP. Science 2014; 344: 392
- 8h Lee S. Kim S. Tetrahedron Lett. 2009; 50: 3345
- 8i Jang DO. Kim SY. J. Am. Chem. Soc. 2008; 130: 16152
- 9a Park J. Hong S. Chem. Soc. Rev. 2012; 41: 6931
- 9b Shaw S. White JD. Synthesis 2016; 48: 2768
- 9c Also see: Bandini M. Fagioli M. Garavelli M. Melloni A. Trigari V. Umani-Ronchi A. J. Org. Chem. 2004; 69: 7511
- 9d Wu S. Tang J. Han J. Mao D. Liu X. Gao X. Yu J. Wang L. Tetrahedron 2014; 70: 5986
- 10a Sibi MP. Chen J. J. Am. Chem. Soc. 2001; 123: 9472
- 10b Sibi MP. Petrovic G. Zimmerman J. J. Am. Chem. Soc. 2005; 127: 2390
- 10c He L. Srikanth GS. C. Castle SL. J. Org. Chem. 2005; 70: 8140
- 10d Banerjee B. Capps SG. Kang J. Robinson JW. Castle SL. J. Org. Chem. 2008; 73: 8973
- 10e Lee JY. Kim S. Kim S. Tetrahedron Lett. 2010; 51: 4947
- 10f Graham TH. Jones CM. Jui NT. MacMillan DW. C. J. Am. Chem. Soc. 2008; 130: 16494
- 11 All the starting enones and lactones used in this study are known in the literature, see Supporting Information.
- 12a Yorimitsu H. Oshima K. In Radicals in Organic Synthesis. Vol. 1. Renaud P. Sibi MP. Wiley-VCH; Weinheim: 2001: 11
- 12b Renaud P. In Encyclopedia of Radicals in Chemistry, Biology and Materials. Vol. 1. Chatgilialoglu C. Studer A. Wiley; New York, NY: 2012: 601
- 12c Curran DP. McFadden TR. J. Am. Chem. Soc. 2016; 138: 7741
- 13 A variety of 3+ and 2+ chiral Lewis acids were screened with modest success; see Supporting Information for details.
- 14 Sibi MP. Nad S. Angew. Chem. Int. Ed. 2007; 46: 9231
- 15 Urabe H. Yamashita K. Suzuki K. Kobayashi K. Sato F. J. Org. Chem. 1995; 60: 3576
- 16 For an example of conjugate addition of achiral copper reagent to α-alkylidene cyclopentanone see: Borner C. Dennis MR. Sinn E. Woodward S. Eur. J. Org. Chem. 2001; 2435
- 17 We have not established the relative stereochemistry of the major isomer. As noted in ref. 14, we speculate that the newly formed chiral center controls the stereochemistry of the H-atom-transfer step.
- 18a Ref. 14.
- 18b Sibi MP. Zimmerman J. J. Am. Chem. Soc. 2006; 128: 13346
- 18c Hutson GE. Turkman YE. Rawal VH. J. Am. Chem. Soc. 2013; 135: 4988
- 19 Representative Procedure for Radical Addition To a 6 dram vial were added substrate (0.3 mmol) and Lewis acid 4 (0.09 mmol, 30 mol%). The vial was sealed with a septum, the air was removed from the vial via a vacuum pump, nitrogen was charged. To the mixture was then charged solvent (CH2Cl2, 8 mL), the mixture was stirred at r.t. for 20 min. Then the mixture was cooled to –78 °C, radical precursor (1.5 mmol, 5 equiv), triethylborane solution (1.0 M in hexane, 1.2 mL, 4 equiv), tributyltin hydride (0.24 mL, 0.9 mmol, 3 equiv), and oxygen gas (10 mL) were added successively via syringe. The reaction was stirred at –78 °C for 2–3 h until TLC analysis indicated disappearance of starting material. To the mixture was added silica gel (3.6 g), the solvent was removed under reduced pressure, the residue was first washed with hexanes (100 mL), then Et2O (100 mL). To the ether solution was added silica gel (1.8 g), the solvent was removed under reduced pressure. The residue was subjected to flash chromatography using hexane/EtOAc (9:1) as eluent to afford the conjugate addition product. 2-(2-Methyl-1-phenylpropyl)-cyclopentanone (2) 88 mg (0.5 mmol), yield 81%, dr 99:1, ee 75% by HPLC (210 nm, 25 °C, OJ-H column Chiralcel, 0.46cm × 25 cm, from Daicel Chemical Ind., Ltd., 1% i-PrOH/hexanes, 0.5 mpm, t R (major) = 18.5 min; t R (minor) = 14.4 min). [α]D +71.3 (c 0.3, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ = 0.65 (d, J = 6.4 Hz, 3 H), 0.95 (t, J = 6.8 Hz, 3 H), 1.56–2.46 (m, 8 H), 2.61 (dd, J = 10.4, 3.6 Hz, 1 H), 7.11–7.25 (m, 5 H). 13C NMR (100 MHz, CDCl3): δ = 20.9, 22.0, 22.1, 26.9, 29.7, 39.4, 52.7, 53.8, 126.4, 128.5, 128.8, 144.2, 220.3. IR: 3062, 3029, 2960, 2894, 2871, 1733, 1493, 1470, 1407, 1385, 1273, 1152 cm–1. HRMS: m/z calcd for C15H20ONa+: 239.1406; found: 239.1400.
For selected examples, see:
For selected examples, see:
For selected recent reviews, see:
For the installation of contiguous chiral centers in radical reactions, see:
For stereochemical models of single-point binding substrates to chiral salens, see: