RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2018; 29(01): 79-84
DOI: 10.1055/s-0036-1591210
DOI: 10.1055/s-0036-1591210
letter
Copper(I) Iodide-Catalyzed (Het)arylation of Diethyl Malonate with (Het)aryl Bromides by Using 1,3-Benzoxazole as a Ligand
The research has been supported by National Natural Science Foundation of China (Grant No.U1463201, 21522604 and 21402240) and Jiangsu Province Natural Science Fund (Grant No.BK20150031)Weitere Informationen
Publikationsverlauf
Received: 20. Juni 2017
Accepted after revision: 26. Juli 2017
Publikationsdatum:
26. Oktober 2017 (online)

Abstract
An efficient Ullmann-type coupling of aryl bromides with diethyl malonate in the presence of copper(I) iodide and 1,3-benzoxazole is presented. This method has a broad substrate scope (heterocyclic and phenyl bromides) and good functional-group tolerance (OMe, Me, Ac, CN, NO2, F, and Cl). Moreover, less time is needed to reach full conversion (3–9 hours).
Key words
Ullmann coupling - benzoxazole - copper catalysis - aryl bromides - hetarylation - arylationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591210.
- Supporting Information
-
References and Notes
- 1a Hegde VR. Dai P. Patel M. Gullo VP. Tetrahedron Lett. 1998; 39: 5683
- 1b Takeda T. Gonda R. Hatano K. Chem. Pharm. Bull. 1997; 45: 697
- 1c Kong FM. Andersen RJ. J. Org. Chem. 1993; 58: 6924
- 1d Kimura Y. Nishibe M. Nakajima H. Hamasaki T. Agric. Biol. Chem. 1991; 55: 1137
- 2a Rieu J.-P. Boucherle A. Cousse H. Mouzin G. Tetrahedron 1986; 42: 4095
- 2b Lehmann JM. Lenhard JM. Oliver BB. Ringold GM. Kliewer SA. J. Biol. Chem. 1997; 272: 3406
- 2c Kalgutkar AS. Marnett AB. Crews BC. Remmel RP. Marnett LJ. J. Med. Chem. 2000; 43: 2860
- 2d Jang JH. Lee H. Sharma A. Lee SM. Lee TH. Kang C. Kim JS. Chem. Commun. 2016; 52: 9965
- 2e Giardiello FM. Hamilton SR. Krush AJ. Piantadosi S. Hylind LM. Celano P. Booker SV. Robinson CR. Offerhaus GJ. A. N. Engl. J. Med. 1993; 328: 1313
- 2f Rocca J. Manin S. Hulin A. Aissat A. Verbecq-Morlot W. Prulière-Escabasse V. Wohlhuter-Haddad A. Epaud R. Fanen P. Tarze A. Br. J. Pharmacol. 2016; 173: 1728
- 2g Oaks JL. Gilbert M. Virani MZ. Watson RT. Meteyer CU. Rideout BA. Shivaprasad HL. Ahmed S. Chaudhry MJ. I. Arshad M. Mahmood S. Ali A. Khan AA. Nature 2004; 427: 630
- 3a Ng PS. Manjunatha UH. Rao SP. S. Camacho LR. Ma N.-L. Herve M. Noble CG. Goh A. Peukert S. Diagana TT. Smith PW. Kondreddi RR. Eur. J. Med. Chem. 2015; 106: 144
- 3b Chidipudi SR. Burns DJ. Khan I. Lam HW. Angew. Chem. Int. Ed. 2015; 54: 13975
- 3c Peña-López M. Neumann H. Beller M. Chem. Commun. 2015; 51: 13082
- 3d Bui M. Hao X. Shin Y. Cardozo M. He X. Henne K. Suchomel J. McCarter J. McGee LR. San MT. Medina JC. Mohn D. Tran T. Wannberg S. Wong J. Wong S. Zalameda L. Metz D. Cushing TD. Bioorg. Med. Chem. Lett. 2015; 25: 1104
- 3e Kafka S. Proisl K. Kašpárková V. Urankar D. Kimmel R. Košmrlj J. Tetrahedron 2013; 69: 10826
- 4a Lu B. Ma D. Org. Lett. 2006; 8: 6115
- 4b Chen Y. Xie X. Ma D. J. Org. Chem. 2007; 72: 9329
- 4c Chen Y. Wang Y. Sun Z. Ma D. Org. Lett. 2008; 10: 625
- 5 Wang B. Lu B. Jiang Y. Zhang Y. Ma D. Org. Lett. 2008; 10: 2761
- 6a Chen D. Wang Z.-J. Bao W. J. Org. Chem. 2010; 75: 5768
- 6b Yuan Q. Ma D. J. Org. Chem. 2008; 73: 5159
- 7a Malakar CC. Schmidt D. Conrad J. Beifuss U. Org. Lett. 2011; 13: 1972
- 7b Choppakatla S. Dachepally AK. Bollikolla HB. Tetrahedron Lett. 2016; 57: 2488
- 8a Ullmann F. Bielecki J. Ber. Dtsch. Chem. Ges. 1901; 34: 2174
- 8b Hurtley WR. H. J. Chem. Soc. 1929; 1870
- 8c Cirigottis K. Ritchie E. Taylor W. Aust. J. Chem. 1974; 27: 2209
- 8d Bruggink A. McKillop A. Tetrahedron 1975; 31: 2607
- 8e Bryson TA. Stewart JJ. Gibson JM. Thomas PS. Berch JK. Green Chem. 2003; 5: 174
- 9a Fox JM. Huang X.-H. Chieffi A. Buchwald SL. J. Am. Chem. Soc. 2000; 122: 1360
- 9b Kawatsura M. Hartwig JF. J. Am. Chem. Soc. 1999; 121: 1473
- 9c Djakovitch L. Köhler K. J. Organomet. Chem. 2000; 606: 101
- 9d Semmes JG. Bevans SL. Mullins CH. Shaughnessy KH. Tetrahedron Lett. 2015; 56: 3447
- 9e Beare NA. Hartwig JF. J. Org. Chem. 2002; 67: 541
- 9f Buchmeiser MR. Schareina T. Kempe R. Wurst KB. J. Organomet. Chem. 2001; 634: 39
- 10 Okuro K. Furuune M. Miura M. Nomura M. J. Org. Chem. 1993; 58: 7606
- 11 Monnier F. Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954
- 12a Huang Z. Hartwig JF. Angew. Chem. Int. Ed. 2012; 51: 1028
- 12b Cristau HJ. Cellier PP. Spindler J.-F. Taillefer M. Chem. Eur. J. 2004; 10: 5607
- 13a Yip SF. Cheung HY. Zhou Z. Kwong FY. Org. Lett. 2007; 9: 3469
- 13b Xie X.-A. Cai G.-R. Ma D. Org. Lett. 2005; 7: 4693
- 13c Jiang Y. Wu N. Wu H. He M. Synlett 2005; 16: 2731
- 14a Pai G. Chattopadhyay AP. Synthesis 2013; 45: 1475
- 14b Kidwai M. Bhardwaj S. Poddar R. Beilstein J. Org. Chem. 2010; 6: No 35
- 15 Diethyl (Het)arylmalonates 3a–v; General Procedure DMSO (2 mL), the appropriate (het)aryl bromide 1 (1.0 mmol), diethyl malonate (2; 1.5 mmol), CuI (0.1 mmol), 1,3-benzoxazole (0.2 mmol), and K3PO4 (3 mmol) were successively added to a sealed tube under argon. The mixture was stirred at 50 °C for 3–9 h until the reaction was complete (TLC) and then poured into sat. aq NH4Cl (20 mL). The mixture was extracted with EtOAc (3 × 20 mL), and the organic phases were combined and washed with sat. aq NH4Cl (2 × 20 mL) and H2O (2 × 20 mL). The separated organic layer was then dried (Na2SO4), filtered, and concentrated under reduced pressure. The residue was purified by chromatography (silica gel, hexane/EtOAc). Diethyl Pyridin-3-ylmalonate (3a) Purified by column chromatography [silica gel, hexane/EtOAc (6:1)] to give a yellowish oil; yield: 204 mg (86%). 1H NMR (400 MHz, CDCl3): δ = 8.55–8.51 (m, 2 H), 7.80 (dt, J = 8.0, 2.0 Hz, 1 H), 7.27 (dd, J = 7.9, 4.8 Hz, 1 H), 4.59 (s, 1 H), 4.24–4.11 (m, 4 H), 1.21 (t, J = 7.1 Hz, 6 H). 13C NMR (101 MHz, CDCl3): δ = 167.43, 150.28, 149.53, 136.93, 128.97, 123.52, 62.19, 55.43, 13.97. HRMS (TOF): m/z [M + H]+ calcd for C12H15NO4: 238.1074; found: 238.1084.