RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2018; 29(13): 1796-1800
DOI: 10.1055/s-0036-1591585
DOI: 10.1055/s-0036-1591585
letter
Synthesis of Fused Purine Heterocycles via a One-pot Cascade Reaction of a Trisubstituted Pyrimidine
The research was financially supported by National Science and Technology Major Project ‘Key New Drug Creation and Manufacturing Program’ (2015ZX09303001), National Natural Science Foundation of China (21602256).Weitere Informationen
Publikationsverlauf
Received: 01. Februar 2018
Accepted after revision: 22. April 2018
Publikationsdatum:
23. Mai 2018 (online)

‡ These authors contributed equally.
Abstract
A rapid and expedient one-pot procedure for the synthesis of fused purine derivatives from a trisubstituted pyrimidine and various amines has been developed. The tandem substitution reaction and copper(I)-catalyzed annulation exhibited high efficiency. The fused heterocyclic products contain the purine scaffold and may be useful in medicinal chemistry and bioscience.
Key words
one-pot procedure - cascade reaction - fused purine heterocycles - copper(I) catalysis - trisubstituted pyrimidinesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591585.
- Supporting Information
-
References and Notes
- 1a Akhtar W. Khan MF. Verma G. Shaquiquzzaman M. Rizvi MA. Mehdi SH. Akhter M. Alam MM. Eur. J. Med. Chem. 2017; 126: 705
- 1b Cahill MM. O’Shea KD. Pierce LT. Winfield HJ. Eccles KS. Lawrence SE. McCarthy FO. Pharmaceuticals (Basel) 2017; 10
- 1c Chen Q. Davidson A. Bioorg. Med. Chem. Lett. 2017; 27: 4436
- 1d Chhabria MT. Patel S. Modi P. Brahmkshatriya PS. Curr. Top. Med. Chem. 2016; 16: 2841
- 1e El-Gamal MI. Anbar HS. Expert Opinion on Therapeutic Patents 2017; 27: 591
- 1f Muylaert K. Jatczak M. Mangelinckx S. Stevens CV. Curr. Med. Chem. 2016; 23: 4784
- 1g Raffa D. Maggio B. Raimondi MV. Cascioferro S. Plescia F. Cancemi G. Daidone G. Eur. J. Med. Chem. 2015; 97: 732
- 1h Son KJ. Choi KR. Ryu CK. Lee SJ. Kim HJ. Lee H. PLoS One 2017; e0173121
- 1i Belmont P. Alarcon K. Demeunynck M. Lhomme J. Bioorg. Med. Chem. Lett. 1999; 9: 233
- 1j Kaur R. Kaur P. Sharma S. Singh G. Mehndiratta S. Bedi PM. Nepali K. Recent Pat. Anticancer Drug Discov. 2015; 10: 23
- 1k Tariq S. Somakala K. Amir M. Eur. J. Med. Chem. 2018; 143: 542
- 1l Wang L. Tian Y. Chen W. Liu H. Zhan P. Li D. Liu H. De Clercq E. Pannecouque C. Liu X. Eur. J. Med. Chem. 2014; 85: 293
- 1m Yang D. An B. Wei W. Tian L. Huang B. Wang H. ACS Comb. Sci. 2015; 17: 113
- 1n Zhan P. Liu X. De Clercq E. Curr. Med. Chem. 2008; 15: 1529
- 1o Goodfellow VS. Loweth CJ. Ravula SB. Wiemann T. Nguyen T. Xu Y. Todd DE. Sheppard D. Pollack S. Polesskaya O. Marker DF. Dewhurst S. Gelbard HA. J. Med. Chem. 2013; 56: 8032
- 1p Xie M. Lapidus RG. Sadowska M. Edelman MJ. Hosmane RS. Bioorg. Med. Chem. 2016; 24: 2595
- 1q Cahill MM. O’Shea KD. Pierce LT. Winfield HJ. Eccles KS. Lawrence SE. McCarthy FO. Pharmaceuticals (Basel) 2017; 10: 62
- 2a Bannwitz S. Krane D. Vortherms S. Kalin T. Lindenschmidt C. Golpayegani NZ. Tentrop J. Prinz H. Muller K. J. Med. Chem. 2014; 57: 6226
- 2b Cherukupalli S. Hampannavar GA. Chinnam S. Chandrasekaran B. Sayyad N. Kayamba F. Aleti RR. Karpoormath R. Bioorg. Med. Chem. 2018; 26: 309
- 3a Iaroshenko VO. Ostrovskyi D. Miliutina M. Maalik A. Villinger A. Tolmachev A. Volochnyuk DM. Langer P. Adv. Synth. Catal. 2012; 354: 2495
- 3b Meng G. Niu HY. Qu GR. Fossey JS. Li JP. Guo HM. Chem. Commun. (Camb.) 2012; 48: 9601
- 4a Chu JJ. Hu BL. Liao ZY. Zhang XG. J. Org. Chem. 2016; 81: 8647
- 4b Jin SJ. Guo JM. Zhu YS. Wang QL. Org. Biomol. Chem. 2017; 15: 8729
- 4c Meng Q. Chen F. Yu W. Org. Lett. 2017; 19: 5186
- 4d Oh KH. Kim SM. Park SY. Park JK. Org. Lett. 2016; 18: 2204
- 4e Pang X. Wu M. Ni J. Zhang F. Lan J. Chen B. Org. Lett. 2017; 82: 10110
- 4f Shin S. Son JY. Choi C. Kim S. Lee PH. J. Org. Chem. 2016; 81: 11706
- 4g Sueda T. Okamoto N. Yanada R. J. Org. Chem. 2016; 81: 5745
- 4h Thapa S. Basnet P. Giri R. J. Org. Chem. 2017; 139: 5700
- 4i Tiwari AR. Bhanage BM. Org. Biomol. Chem. 2016; 14: 7920
- 4j Wen LR. Dou Q. Wang YC. Zhang JW. Guo WS. Li M. J. Org. Chem. 2017; 82: 1428
- 4k Yang JC. Zhang JJ. Guo LN. J. Org. Chem. 2016; 14: 9806
- 4l Zhang H. Li W. Zhu C. J. Am. Chem. Soc. 2017; 82: 2199
- 4m Zhao Y. Li Z. Sharma UK. Sharma N. Song G. Van der Eycken EV. Chem. Commun. (Camb.) 2016; 52: 6395
- 4n Dong ZB. Liu X. Bolm C. Org. Lett. 2017; 19: 5916
- 4o Guo XX. Gu DW. Wu Z. Zhang W. Chem. Rev. 2015; 115: 1622
- 4p Kavala V. Yang Z. Konala A. Huang CY. Kuo CW. Yao CF. J. Org. Chem. 2017; 82: 7280
- 4q Li SS. Li WH. Zhang GT. Xia YQ. Liu CF. Su F. Zhang XM. Dong L. Org. Biomol. Chem. 2016; 14: 7859
- 4r Wang W. Wei F. Ma Y. Tung CH. Xu Z. Org. Lett. 2016; 18: 4158
- 4s Xie C. Han X. Gong J. Li D. Ma C. J. Org. Chem. 2017; 15: 5811
- 4t Yugandar S. Konda S. Ila H. Org. Biomol. Chem. 2017; 19: 1512
- 4u Jin SJ. Guo JM. Zhu YS. Wang QL. Bu ZW. Org. Biomol. Chem. 2017; 15: 8729
- 5a Zeng MT. Wang M. Peng HY. Cheng Y. Dong ZB. Synthesis 2018; 50: 644
- 5b Xu J. Mu X. Chen P. Ye J. Liu G. Org. Lett. 2014; 16: 3942
- 6 Wehbe M. Lo C. Leung AW. Y. Dragowska WH. Ryan GM. Bally MB. Invest. New Drugs 2017; 35: 682
- 7a Ahuja BB. Sudalai A. Org. Biomol. Chem. 2015; 13: 5918
- 7b Yang D. Yang H. Fu H. Chem. Commun. (Camb.) 2011; 47: 2348
- 7c Ma D. Jiang Y. Chimia (Aarau.) 2011; 65: 914
- 8 Lv X. Bao W. J. Org. Chem. 2007; 72: 3863
- 9 Thakur KG. Sekar G. Chem. Commun. (Camb.) 2011; 47: 6692
- 10 Gao X. Wu B. Yan Z. Zhou YG. Org. Biomol. Chem. 2016; 14: 8237
- 11 Cao Q. Peng HY. Cheng Y. Dong ZB. Synthesis 2018; 50: 1527
- 12a Clarke LA. Ring A. Ford A. Sinha AS. Lawrence SE. Maguire AR. Org. Biomol. Chem. 2014; 12: 7612
- 12b Kim HY. Takizawa S. Oh K. Org. Biomol. Chem. 2016; 14: 7191
- 12c Liu Y. Park SK. Xiao Y. Chae J. Org. Biomol. Chem. 2014; 12: 4747
- 12d Sadhu P. Alla SK. Punniyamurthy T. J. Org. Chem. 2015; 80: 8245
- 12e Teng Q. Hu J. Ling L. Sun R. Dong J. Chen S. Zhang H. Org. Biomol. Chem. 2014; 12: 7721
- 13 General Procedure for the Synthesis of 4a–q: K2CO3 (221.1 mg, 1.6 mmol) was added to a solution of 2-(((5-bromo-2-chloropyrimidin-4-yl)amino)methyl)benzonitrile (1; 257.6 mg, 0.8 mmol) and the amine (2a–n, 0.88 mmol) in DMSO (20 mL) in a 50 mL round-bottom flask at 120 °C. The mixture was stirred for 6–8 h under an argon atmosphere. The complete consumption of benzonitrile 1 was determined by TLC. CuI (30.5 mg, 0.16 mmol) and l-proline (L3, 36.8 mg, 0.32 mmol) were added and the reaction mixture was stirred for another 8 h at 80 °C. After the reaction was complete, the mixture was diluted with saturated ammonium chloride solution (40 mL) and extracted with CH2Cl2 (3 × 30 mL). The combined organic layer was washed with saturated NaCl, the organic solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel (EtOAc/n-hexanes) to afford the corresponding product.
- 14 Characterization Data of representative compounds: Compound 4a: Yield: 86%; yellow amorphous solid; mp 198–200 °C; 1H NMR (300 MHz, CDCl3): δ = 8.62 (s, 1 H), 8.04 (m, 1 H), 7.57–7.59 (m, 3 H), 7.30–7.42 (m, 5 H), 6.35 (br. s, 1 H), 5.07 (s, 2 H), 4.75 (d, J = 5.7 Hz, 2 H). 13C NMR (101 MHz, CDCl3): δ = 159.44, 157.23, 153.37, 144.46, 143.76, 138.49, 132.41, 131.11, 129.26, 128.68, 127.74, 127.55, 127.43, 124.35, 122.71, 77.37, 77.05, 76.74, 46.61, 29.73. HRMS (ESI): m/z [M+H]+ calcd for C19H16N5: 314.1397; found: 314.1398. Compound 4d: Yield: 91%; yellow amorphous solid; mp 191–193 °C; 1H NMR (400 MHz, CDCl3): δ = 8.70 (m, 1 H), 8.01 (m, 1 H), 7.51–7.70 (3 H), 5.02 (s, 2 H), 3.63 (m, 4 H), 1.65 (m, 4 H), 1.25–1.42 (12 H), 0.90 (m, 6 H). 13C NMR (101 MHz, CDCl3): δ = 158.50, 152.42, 143.67, 131.07, 130.98, 130.26, 128.94, 128.87, 128.83, 124.15, 122.15, 48.33, 46.29, 31.77, 27.71, 26.74, 22.69, 14.14. HRMS (ESI): m/z [M+H]+ calcd for C24H34N5: 392.1836; found: 392.1839. Compound 4p: Yield: 78%; yellow amorphous solid; mp 202–204 °C; 1H NMR (400 MHz, CDCl3): δ = 8.90 (s, 1 H), 8.12–8.14 (m, 1 H), 7.61–7.68 (m, 3 H), 5.18 (s, 2 H), 4.14 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 159.61, 155.05, 148.98, 143.83, 142.10, 130.93, 129.17, 124.34, 122.63, 55.34, 46.74. HRMS (ESI): m/z [M+H]+ calcd for C13H11N4O: 239.0921; found: 239.0922.